// // FILE: RunningMedian.cpp // AUTHOR: Rob.Tillaart at gmail.com // VERSION: 0.1.15 // PURPOSE: RunningMedian library for Arduino // // HISTORY: // 0.1.00 - 2011-02-16 initial version // 0.1.01 - 2011-02-22 added remarks from CodingBadly // 0.1.02 - 2012-03-15 added // 0.1.03 - 2013-09-30 added _sorted flag, minor refactor // 0.1.04 - 2013-10-17 added getAverage(uint8_t) - kudo's to Sembazuru // 0.1.05 - 2013-10-18 fixed bug in sort; removes default constructor; dynamic memory // 0.1.06 - 2013-10-19 faster sort, dynamic arrays, replaced sorted float array with indirection array // 0.1.07 - 2013-10-19 add correct median if _cnt is even. // 0.1.08 - 2013-10-20 add getElement(), add getSottedElement() add predict() // 0.1.09 - 2014-11-25 float to double (support ARM) // 0.1.10 - 2015-03-07 fix clear // 0.1.11 - 2015-03-29 undo 0.1.10 fix clear // 0.1.12 - 2015-07-12 refactor constructor + const // 0.1.13 - 2015-10-30 fix getElement(n) - kudos to Gdunge // 0.1.14 - 2017-07-26 revert double to float - issue #33 // 0.1.15 - 2018-08-24 make runningMedian Configurable #110 // // Released to the public domain // #include "RunningMedian.h" RunningMedian::RunningMedian(const uint8_t size) { _size = constrain(size, MEDIAN_MIN_SIZE, MEDIAN_MAX_SIZE); #ifdef RUNNING_MEDIAN_USE_MALLOC _ar = (float *) malloc(_size * sizeof(float)); _p = (uint8_t *) malloc(_size * sizeof(uint8_t)); #endif clear(); } RunningMedian::~RunningMedian() { #ifdef RUNNING_MEDIAN_USE_MALLOC free(_ar); free(_p); #endif } // resets all counters void RunningMedian::clear() { _cnt = 0; _idx = 0; _sorted = false; for (uint8_t i = 0; i < _size; i++) _p[i] = i; } // adds a new value to the data-set // or overwrites the oldest if full. void RunningMedian::add(float value) { _ar[_idx++] = value; if (_idx >= _size) _idx = 0; // wrap around if (_cnt < _size) _cnt++; _sorted = false; } float RunningMedian::getMedian() { if (_cnt == 0) return NAN; if (_sorted == false) sort(); if (_cnt & 0x01) return _ar[_p[_cnt/2]]; else return (_ar[_p[_cnt/2]] + _ar[_p[_cnt/2 - 1]]) / 2; } #ifdef RUNNING_MEDIAN_ALL float RunningMedian::getAverage() { if (_cnt == 0) return NAN; float sum = 0; for (uint8_t i=0; i< _cnt; i++) sum += _ar[i]; return sum / _cnt; } float RunningMedian::getAverage(uint8_t nMedians) { if ((_cnt == 0) || (nMedians == 0)) return NAN; if (_cnt < nMedians) nMedians = _cnt; // when filling the array for first time uint8_t start = ((_cnt - nMedians) / 2); uint8_t stop = start + nMedians; if (_sorted == false) sort(); float sum = 0; for (uint8_t i = start; i < stop; i++) sum += _ar[_p[i]]; return sum / nMedians; } float RunningMedian::getElement(const uint8_t n) { if ((_cnt == 0) || (n >= _cnt)) return NAN; uint8_t pos = _idx + n; if (pos >= _cnt) // faster than % { pos -= _cnt; } return _ar[pos]; } float RunningMedian::getSortedElement(const uint8_t n) { if ((_cnt == 0) || (n >= _cnt)) return NAN; if (_sorted == false) sort(); return _ar[_p[n]]; } // n can be max <= half the (filled) size float RunningMedian::predict(const uint8_t n) { if ((_cnt == 0) || (n >= _cnt/2)) return NAN; float med = getMedian(); // takes care of sorting ! if (_cnt & 0x01) { return max(med - _ar[_p[_cnt/2-n]], _ar[_p[_cnt/2+n]] - med); } else { float f1 = (_ar[_p[_cnt/2 - n]] + _ar[_p[_cnt/2 - n - 1]])/2; float f2 = (_ar[_p[_cnt/2 + n]] + _ar[_p[_cnt/2 + n - 1]])/2; return max(med - f1, f2 - med)/2; } } #endif void RunningMedian::sort() { // bubble sort with flag for (uint8_t i = 0; i < _cnt-1; i++) { bool flag = true; for (uint8_t j = 1; j < _cnt-i; j++) { if (_ar[_p[j-1]] > _ar[_p[j]]) { uint8_t t = _p[j-1]; _p[j-1] = _p[j]; _p[j] = t; flag = false; } } if (flag) break; } _sorted = true; } // END OF FILE