// // FILE: TSL235R.cpp // AUTHOR: Rob Tillaart // VERSION: 0.1.1 // PURPOSE: library fot the TSL235R light to frequency convertor // // HISTORY: // 0.1.0 2020-05-29 initial version // 0.1.1 2020-06-03 add irradiance_HS() #include "TSL235R.h" TSL235R::TSL235R(float voltage) { _voltage = voltage; calculateFactor(); } float TSL235R::irradiance(uint32_t Hz) { return Hz * _factor; } float TSL235R::irradiance(uint32_t pulses, uint32_t milliseconds) { return (pulses * 1000.0 * _factor) / milliseconds; } float TSL235R::irradiance_HS(uint32_t pulses, uint32_t microseconds) { return (pulses * 1000000.0 * _factor) / microseconds; } void TSL235R::setWavelength(uint16_t wavelength) { _waveLength = wavelength; calculateFactor(); } void TSL235R::setVoltage(float voltage) { _voltage = voltage; calculateFactor(); } void TSL235R::calculateFactor() { // figure 1 datasheet // 1 Khz crosses the line at 35/230 between 1 and 10. // so the correctiion factor is 10^0.15217 = 1.419659 = 1.42 // as the graph is in kHz we need to correct a factor 1000 // as the irradiance function gets Hz const float cf = 0.00142; _waveLengthFactor = calcWLF(_waveLength); _voltageFactor = 0.988 + (_voltage - 2.7) * (0.015 / 2.8); _factor = cf * _waveLengthFactor * _voltageFactor; } float TSL235R::calcWLF(uint16_t _waveLength) { // figure 2 datasheet // 635 nm is reference 1.000 // remaining is linear interpolated between points in the graph float in[] = { 300, 350, 400, 500, 600, 635, 700, 750, 800, 850, 900, 1000, 1100}; float out[] = { 0.1, 0.35, 0.5, 0.75, 0.93, 1.00, 1.15, 1.20, 1.15, 1.10, 0.95, 0.40, 0.10}; return 1.0 / multiMap(_waveLength, in, out, 13); } float TSL235R::multiMap(float val, float * _in, float * _out, uint8_t size) { // take care the value is within range // val = constrain(val, _in[0], _in[size-1]); if (val <= _in[0]) return _out[0]; if (val >= _in[size-1]) return _out[size-1]; // search right interval uint8_t pos = 1; // _in[0] allready tested while(val > _in[pos]) pos++; // this will handle all exact "points" in the _in array if (val == _in[pos]) return _out[pos]; // interpolate in the right segment for the rest return (val - _in[pos-1]) * (_out[pos] - _out[pos-1]) / (_in[pos] - _in[pos-1]) + _out[pos-1]; } // -- END OF FILE --