// // FILE: AD568X.cpp // AUTHOR: Rob Tillaart // VERSION: 0.1.0 // DATE: 2023-09-18 // PURPOSE: Arduino library for AD568X series Digital Analog Convertor. #include "AD568X.h" // not all "commands" implemented #define AD568X_REG_NOP 0x00 #define AD568X_REG_WRITE 0x10 #define AD568X_REG_UPDATE 0x20 #define AD568X_REG_WRITE_UPDATE 0x30 #define AD568X_REG_CONTROL 0x40 AD568X::AD568X(uint8_t slaveSelect) { _hwSPI = true; _select = slaveSelect; _value = 0; } AD568X::AD568X(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) { _hwSPI = false; _dataOut = spiData; _clock = spiClock; _select = slaveSelect; _value = 0; } // initializes the SPI // and sets internal state void AD568X::begin() { pinMode(_select, OUTPUT); digitalWrite(_select, HIGH); _spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE1); if(_hwSPI) { #if defined(ESP32) if (_useHSPI) // HSPI { mySPI = new SPIClass(HSPI); mySPI->end(); mySPI->begin(14, 12, 13, _select); // CLK=14 MISO=12 MOSI=13 } else // VSPI { mySPI = new SPIClass(VSPI); mySPI->end(); mySPI->begin(18, 19, 23, _select); // CLK=18 MISO=19 MOSI=23 } #else // generic hardware SPI mySPI = &SPI; mySPI->end(); mySPI->begin(); #endif delay(1); } else // software SPI { pinMode(_dataOut, OUTPUT); pinMode(_clock, OUTPUT); digitalWrite(_dataOut, LOW); digitalWrite(_clock, LOW); } } uint8_t AD568X::getType() { return _type; } void AD568X::setLDACPin(uint8_t ldac) { _ldac = ldac; pinMode(_ldac, OUTPUT); digitalWrite(_ldac, HIGH); } bool AD568X::triggerLDAC() { if (_ldac == 255) return false; digitalWrite(_ldac, LOW); digitalWrite(_ldac, HIGH); return true; } // value = 0..65535 (16 bit), 16383 (14 bit), 4095 (12 bit) depending on type) bool AD568X::setValue(uint16_t value) { if ((_type == 12) && (value > 4095)) return false; if ((_type == 14) && (value > 16383)) return false; _value = value; updateDevice(AD568X_REG_WRITE_UPDATE, value); return true; } // returns 0..65535 (16 bit), 16383 (14 bit), 4095 (12 bit) depending on type) uint16_t AD568X::getValue() { return _value; } bool AD568X::setPercentage(float percentage) { uint16_t value = 0; if ((percentage < 0) || (percentage > 100)) return false; if (_type == 16) value = round(655.35 * percentage); else if (_type == 14) value = round(163.83 * percentage); else /* type = 12 */ value = round( 40.95 * percentage); return setValue(value); } float AD568X::getPercentage() { float value = getValue(); if (value > 0) { if (_type == 16) return value * ( 1.0 / 655.35); if (_type == 14) return value * ( 1.0 / 163.83); if (_type == 12) return value * ( 1.0 / 40.95); } return 0; } bool AD568X::prepareValue(uint16_t value) { if ((_type == 12) && (value > 4095)) return false; if ((_type == 14) && (value > 16383)) return false; _value = value; updateDevice(AD568X_REG_WRITE, value); return true; } bool AD568X::updateValue() { updateDevice(AD568X_REG_UPDATE, 0); return true; } ////////////////////////////////////////////////////////////////// // // CONTROL REGISTER // bool AD568X::setControlRegister(uint16_t value) { _controlReg = value & 0xFC00; updateDevice(AD568X_REG_CONTROL, _controlReg); return true; } bool AD568X::reset() { _controlReg |= (1 << 15); // set RESET bit updateDevice(AD568X_REG_CONTROL, _controlReg); _controlReg = 0x0000; return true; } bool AD568X::setPowerDownMode(uint8_t mode) { if (mode > 3) return false; _controlReg &= 0x9C00; // clear PD bits _controlReg |= (mode << 13); updateDevice(AD568X_REG_CONTROL, _controlReg); return true; } bool AD568X::disableReference(bool b) { _controlReg &= 0xEC00; // clear REF bit if (b) _controlReg |= (1 << 12); updateDevice(AD568X_REG_CONTROL, _controlReg); return true; } bool AD568X::enableGain(bool enable) { _controlReg &= 0xF400; // clear GAIN bit if (enable) _controlReg |= (1 << 11); updateDevice(AD568X_REG_CONTROL, _controlReg); return true; } bool AD568X::enableDaisyChain(bool enable) { _controlReg &= 0xF800; // clear DCEN bit if (enable) _controlReg |= (1 << 10); updateDevice(AD568X_REG_CONTROL, _controlReg); return true; } ////////////////////////////////////////////////////////////////// // // SPI // void AD568X::setSPIspeed(uint32_t speed) { _SPIspeed = speed; _spi_settings = SPISettings(_SPIspeed, MSBFIRST, SPI_MODE1); }; uint32_t AD568X::getSPIspeed() { return _SPIspeed; }; bool AD568X::usesHWSPI() { return _hwSPI; } // ESP32 specific #if defined(ESP32) void AD568X::selectHSPI() { _useHSPI = true; } void AD568X::selectVSPI() { _useHSPI = false; } bool AD568X::usesHSPI() { return _useHSPI; } bool AD568X::usesVSPI() { return !_useHSPI; } void AD568X::setGPIOpins(uint8_t clk, uint8_t miso, uint8_t mosi, uint8_t select) { _clock = clk; _dataOut = mosi; _select = select; pinMode(_select, OUTPUT); digitalWrite(_select, HIGH); mySPI->end(); // disable SPI mySPI->begin(clk, miso, mosi, select); // enable SPI } #endif ////////////////////////////////////////////////////////////////// // // PRIVATE // void AD568X::updateDevice(uint8_t cmd, uint16_t value) { // to be optimized - switch cmd etc uint8_t a = cmd | (value >> 12); uint8_t b = (value >> 4) & 0xFF; uint8_t c = (value << 4) & 0xF0; updateDevice(a, b, c); } void AD568X::updateDevice(uint8_t a, uint8_t b, uint8_t c) { digitalWrite(_select, LOW); if (_hwSPI) { mySPI->beginTransaction(_spi_settings); mySPI->transfer(a); mySPI->transfer(b); mySPI->transfer(c); mySPI->endTransaction(); } else // Software SPI { swSPI_transfer(a); swSPI_transfer(b); swSPI_transfer(c); } digitalWrite(_select, HIGH); } // simple one mode version void AD568X::swSPI_transfer(uint8_t value) { uint8_t clk = _clock; uint8_t dao = _dataOut; for (uint8_t mask = 0x80; mask; mask >>= 1) { digitalWrite(dao,(value & mask)); digitalWrite(clk, HIGH); digitalWrite(clk, LOW); } } ///////////////////////////////////////////////////////////////////////////// // // DERIVED AD5680 // // AD5680::AD5680(uint8_t slaveSelect) : AD568X(slaveSelect) // { // _type = 18; // _value = 0; // } // AD5680::AD5680(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) // : AD568X(spiData, spiClock, slaveSelect) // { // _type = 18; // _value = 0; // } ///////////////////////////////////////////////////////////////////////////// // // DERIVED AD5681 // AD5681R::AD5681R(uint8_t slaveSelect) : AD568X(slaveSelect) { _type = 12; _value = 0; } AD5681R::AD5681R(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) : AD568X(spiData, spiClock, slaveSelect) { _type = 12; _value = 0; } ///////////////////////////////////////////////////////////////////////////// // // DERIVED AD5682 // AD5682R::AD5682R(uint8_t slaveSelect) : AD568X(slaveSelect) { _type = 14; _value = 0; } AD5682R::AD5682R(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) : AD568X(spiData, spiClock, slaveSelect) { _type = 14; _value = 0; } ///////////////////////////////////////////////////////////////////////////// // // DERIVED AD5683 // AD5683R::AD5683R(uint8_t slaveSelect) : AD568X(slaveSelect) { _type = 16; _value = 0; } AD5683R::AD5683R(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) : AD568X(spiData, spiClock, slaveSelect) { _type = 16; _value = 0; } ///////////////////////////////////////////////////////////////////////////// // // DERIVED AD5683 // AD5683::AD5683(uint8_t slaveSelect) : AD568X(slaveSelect) { _type = 16; _value = 0; } AD5683::AD5683(uint8_t spiData, uint8_t spiClock, uint8_t slaveSelect) : AD568X(spiData, spiClock, slaveSelect) { _type = 16; _value = 0; } // -- END OF FILE --