// // FILE: fraction.cpp // AUTHOR: Rob Tillaart // VERSION: 0.1.15 // PURPOSE: Arduino library to implement a Fraction data type // URL: https://github.com/RobTillaart/Fraction #include "fraction.h" ////////////////////////////////////// // // CONSTRUCTORS // Fraction::Fraction(double d) { Fraction::split(float(d)); } Fraction::Fraction(float f) { Fraction::split(f); } void Fraction::split(float f) { // handle special cases? // PI = 355/113; // 2.7e-7 // PI*2 = 710/113; // PI/2 = 335/226; // EULER = 2721/1001; // 1.1e-7 // EULER = 1264/465; // 2.2e-6 // get robust for small values. (effectively zero) if (abs(f) < 0.00001) { n = 0; d = 1; return; } if (int32_t(f) == f) { n = int32_t(f); d = 1; return; } // Normalize to 0.0 ... 1.0 bool negative = f < 0; if (negative) f = -f; // TODO investigate different strategy: // intpart = int32_t(f); // strip of the integer part. // f = f - intpart; // determine remainder // determine n, d // n += intpart * d; // add integer part * denominator to fraction. bool reciproke = f > 1; if (reciproke) f = 1/f; fractionize(f); simplify(); // denormalize if (reciproke) { int32_t t = n; n = d; d = t; } if (negative) { n = -n; } } Fraction::Fraction(int32_t p, int32_t q) : n(p), d(q) { simplify(); } ////////////////////////////////////// // // PRINTING // size_t Fraction::printTo(Print& p) const { size_t s = 0; // TODO split of sign first // // vs 22/7 => 3_1/7 // if (n >= d) // { // s += p.print(n/d, DEC); // s += p.print("_"); // } // s += p.print(n%d, DEC); s += p.print(n, DEC); s += p.print('/'); s += p.print(d, DEC); return s; }; ////////////////////////////////////// // // EQUALITIES // bool Fraction::operator == (const Fraction &c) { return (n * c.d) == (d * c.n); } // bool Fraction::operator == (const float &f) // { // Fraction c(f); // return (n * c.d) == (d * c.n); // } bool Fraction::operator != (const Fraction &c) { return (n * c.d) != (d * c.n); } bool Fraction::operator > (const Fraction &c) { return (n * c.d) > (d * c.n); } bool Fraction::operator >= (const Fraction &c) { return (n * c.d) >= (d * c.n); } bool Fraction::operator < (const Fraction &c) { return (n * c.d) < (d * c.n); } bool Fraction::operator <= (const Fraction &c) { return (n * c.d) <= (d * c.n); } ////////////////////////////////////// // // NEGATE // Fraction Fraction::operator - () { return Fraction(-n, d); } ////////////////////////////////////// // // BASIC MATH // Fraction Fraction::operator + (const Fraction &c) { if (d == c.d) { return Fraction(n + c.n, d); } return Fraction(n*c.d + c.n*d, d * c.d); } Fraction Fraction::operator - (const Fraction &c) { if (d == c.d) { return Fraction(n - c.n, d); } return Fraction(n*c.d - c.n*d, d * c.d); } Fraction Fraction::operator * (const Fraction &c) { return Fraction(n * c.n, d * c.d); } Fraction Fraction::operator / (const Fraction &c) { // division by zero returns 0 return Fraction(n * c.d, d * c.n); } Fraction& Fraction::operator += (const Fraction &c) { if (d == c.d) { n += c.n; } else { n = n * c.d + c.n * d; d *= c.d; } simplify(); return *this; } Fraction& Fraction::operator -= (const Fraction &c) { if (d == c.d) { n -= c.n; } else { n = n * c.d - c.n * d; d *= c.d; } simplify(); return *this; } Fraction& Fraction::operator *= (const Fraction &c) { n *= c.n; d *= c.d; simplify(); return *this; } Fraction& Fraction::operator /= (const Fraction &c) { // division by zero returns 0 n *= c.d; d *= c.n; simplify(); return *this; } double Fraction::toDouble() { return double(n) / d; } float Fraction::toFloat() { return float(n) / d; } // fraction is proper if abs(fraction) < 1 bool Fraction::isProper() { return abs(n) < abs(d); } // visualize fraction as an angle in degrees float Fraction::toAngle() { return atan2(n, d) * (180.0 / PI); } int32_t Fraction::nominator() { return n; } int32_t Fraction::denominator() { return d; } ////////////////////////////////////// // // STATIC // // Mediant - http://www.cut-the-knot.org/Curriculum/Arithmetic/FCExercise.shtml // void Fraction::mediant(Fraction c) // { // n += c.n; // d += c.d; // simplify(); // } // // the mediant is a fraction that is always between 2 fractions // at least if within precision. Fraction Fraction::mediant(const Fraction &a, const Fraction &b) { return Fraction(a.n + b.n, a.d + b.d); } // the middle is a fraction that is between 2 fractions // at least if within precision. Fraction Fraction::middle(const Fraction &a, const Fraction &b) { return Fraction(a.n*b.d + b.n*a.d, 2 * a.d * b.d); } // approximate a fraction with defined denominator // sort of setDenominator(uint16_t den); Fraction Fraction::setDenominator(const Fraction &a, uint16_t b) { int32_t n = round((a.n * b * 1.0) / a.d); int32_t d = b; return Fraction(n, d); } ////////////////////////////////////// // // PROTECTED // http://en.wikipedia.org/wiki/Binary_GCD_algorithm // int32_t Fraction::gcd(int32_t a , int32_t b) { while ( a != 0 ) { int32_t c = a; a = b % a; b = c; } return b; } // not that simple ... void Fraction::simplify() { if (n == 0) { d = 1; return; } bool neg = (n < 0) != (d < 0); int32_t p = abs(n); int32_t q = abs(d); int32_t x = gcd(p,q); p = p / x; q = q / x; // denominator max 4 digits keeps mul and div simple // in preventing overflow while (q > 10000) { // rounding might need improvement p = (p + 5)/10; q = (q + 5)/10; x = gcd(p, q); p = p / x; q = q / x; } n = (neg) ? -p : p; d = q; } ////////////////////////////////////////////////////////////////////////////// // // fractionize() - finds the fraction representation of a float // PRE: 0 <= f < 1.0 // // minimalistic is fast and small // // check for a discussion found later // - http://mathforum.org/library/drmath/view/51886.html // - http://www.gamedev.net/topic/354209-how-do-i-convert-a-decimal-to-a-fraction-in-c/ // // Dr. Peterson // - http://mathforum.org/library/drmath/view/51886.html // (100x) micros()=96048 // showed errors for very small values around 0 void Fraction::fractionize(float val) { // find nearest fraction float Precision = 0.0000001; Fraction low(0, 1); // "A" = 0/1 Fraction high(1, 1); // "B" = 1/1 for (int i = 0; i < 100; ++i) { float testLow = low.d * val - low.n; float testHigh = high.n - high.d * val; if (testHigh < Precision * high.d) break; // high is answer if (testLow < Precision * low.d) { // low is answer high = low; break; } if (i & 1) { // odd step: add multiple of low to high float test = testHigh / testLow; int32_t count = (int32_t)test; // "N" int32_t n = (count + 1) * low.n + high.n; int32_t d = (count + 1) * low.d + high.d; if ((n > 0x8000) || (d > 0x10000)) break; high.n = n - low.n; // new "A" high.d = d - low.d; low.n = n; // new "B" low.d = d; } else { // even step: add multiple of high to low float test = testLow / testHigh; int32_t count = (int32_t)test; // "N" int32_t n = low.n + (count + 1) * high.n; int32_t d = low.d + (count + 1) * high.d; if ((n > 0x10000) || (d > 0x10000)) break; low.n = n - high.n; // new "A" low.d = d - high.d; high.n = n; // new "B" high.d = d; } } n = high.n; d = high.d; } // -- END OF FILE --