#pragma once // // FILE: Statistic.h // AUTHOR: Rob Tillaart // modified at 0.3 by Gil Ross at physics dot org // template version 1.0.0 by Glen Cornell // VERSION: 1.0.5 // PURPOSE: Recursive Statistical library for Arduino // HISTORY: See CHANGELOG.md // // NOTE: 2011-01-07 Gill Ross // Rob Tillaart's Statistic library uses one-pass of the data (allowing // each value to be discarded), but expands the Sum of Squares Differences to // difference the Sum of Squares and the Average Squared. This is susceptible // to bit length precision errors with the float type (only 5 or 6 digits // absolute precision) so for long runs and high ratios of // the average value to standard deviation the estimate of the // standard error (deviation) becomes the difference of two large // numbers and will tend to zero. // // For small numbers of iterations and small Average/SE the original code is // likely to work fine. // It should also be recognised that for very large samples, questions // of stability of the sample assume greater importance than the // correctness of the asymptotic estimators. // // This recursive algorithm, which takes slightly more computation per // iteration is numerically stable. // It updates the number, mean, max, min and SumOfSquaresDiff each step to // deliver max min average, population standard error (standard deviation) and // unbiased SE. // Toolchains for some platforms don't have the stdc++ library, so // we'll make substitutions for features that we use. If your // platform isn't specified here and fails to compile, then you can // explicitly override the HAVE_STDCXX_TYPE_TRAITS, HAVE_STDCXX_CMATH, // and HAVE_STDCXX_CSTDINT feature macros in your build environment. #define STATISTIC_LIB_VERSION (F("1.0.5")) #if defined(__AVR__) #define HAVE_STDCXX_TYPE_TRAITS 0 #define HAVE_STDCXX_CMATH 0 #define HAVE_STDCXX_CSTDINT 0 #else #ifndef HAVE_STDCXX_TYPE_TRAITS #define HAVE_STDCXX_TYPE_TRAITS 1 #endif #ifndef HAVE_STDCXX_CMATH #define HAVE_STDCXX_CMATH 1 #endif #ifndef HAVE_STDCXX_CSTDINT #define HAVE_STDCXX_CSTDINT 1 #endif #endif #if HAVE_STDCXX_TYPE_TRAITS || defined(_GLIBCXX_TYPE_TRAITS) #include #else namespace std { // substitute for std::conditional if not in your tool chain template struct conditional { typedef T type; }; template struct conditional { typedef F type; }; }; #endif /* HAVE_STDCXX_TYPE_TRAITS */ #if HAVE_STDCXX_CMATH || defined(_GLIBCXX_CMATH) #include // substitute for std::sqrtf function, patch for issue #13 #undef sqrtf namespace std { inline float sqrtf(float n) { return __builtin_sqrtf(n); } }; #else #include // substitute for std::sqrt functions if not in your tool chain #undef sqrt namespace std { inline float sqrt(float n) { return __builtin_sqrtf(n); } inline double sqrt(double n) { return __builtin_sqrt(n); } inline long double sqrt(long double n) { return __builtin_sqrtl(n); } }; #endif /* HAVE_STDCXX_CMATH */ #if HAVE_STDCXX_CSTDINT || defined(_GLIBCXX_CSTDINT) #include #else #include // uint32_t, etc. #endif /* HAVE_STDCXX_CSTDINT */ #if HAVE_STDCXX_LIMITS || defined(_GLIBCXX_NUMERIC_LIMITS) #include #else namespace std { template struct numeric_limits { static constexpr T quiet_NaN() { return T(); } }; template<> struct numeric_limits { static constexpr float quiet_NaN() { return __builtin_nanf(""); } }; template<> struct numeric_limits { static constexpr double quiet_NaN() { return __builtin_nan(""); } }; template<> struct numeric_limits { static constexpr long double quiet_NaN() { return __builtin_nanl(""); } }; }; #endif /* HAVE_STDCXX_LIMITS */ /////////////////////////////////////////////////////////////////////////////// // // STATISTICS CLASS // namespace statistic { template class Statistic { public: typedef T value_type; typedef C count_type; static constexpr value_type NaN { std::numeric_limits::quiet_NaN() }; Statistic() = default; void clear() { _cnt = 0; _sum = 0; // NaN; _min = 0; // NaN; _max = 0; // NaN; _extra.clear(); // NOTE: _extra "guards" the conditional code e.g. ssqdiff // NOTE: ssqdiff = not _ssq but sum of square differences // which is SUM(from i = 1 to N) of f(i)-_ave_N)**2 } // returns value actually added value_type add(const value_type value) { value_type previousSum = _sum; if (_cnt == 0) { _min = value; _max = value; } else { if (value < _min) _min = value; else if (value > _max) _max = value; } _sum += value; _cnt++; if (_useStdDev && (_cnt > 1)) { value_type _store = (_sum / _cnt - value); _extra.ssqdif(_extra.ssqdif() + _cnt * _store * _store / (_cnt - 1)); // NOTE: pre 1.0.0 code // ~10% faster but limits the amount of samples to 65K as _cnt*_cnt overflows // value_type _store = _sum - _cnt * value; // _ssqdif = _ssqdif + _store * _store / (_cnt*_cnt - _cnt); // // solution: TODO verify // _ssqdif = _ssqdif + (_store * _store / _cnt) / (_cnt - 1); } return _sum - previousSum; } // returns the number of values added count_type count() const { return _cnt; }; // zero if count == zero value_type sum() const { return _sum; }; // zero if count == zero value_type minimum() const { return _min; }; // zero if count == zero value_type maximum() const { return _max; }; // zero if count == zero value_type range() const { return _max - _min; }; // zero if count == zero value_type middle() const { // prevent over- or underflow if value_type is an int type double mid = _max * 0.5 + _min * 0.5; return (value_type) mid; }; // zero if count == zero // NAN if count == zero value_type average() const { if (_cnt == 0) return NaN; // prevent DIV0 error return _sum / _cnt; } // useStdDev must be true to use next three // all return NAN if count == zero value_type variance() const { if (!_useStdDev) return NaN; if (_cnt == 0) return NaN; // prevent DIV0 error return _extra.ssqdif() / _cnt; } // Population standard deviation value_type pop_stdev() const { if (!_useStdDev) return NaN; if (_cnt == 0) return NaN; // prevent DIV0 error return std::sqrt( _extra.ssqdif() / _cnt); } value_type unbiased_stdev() const { if (!_useStdDev) return NaN; if (_cnt < 2) return NaN; // prevent DIV0 error return std::sqrt( _extra.ssqdif() / (_cnt - 1)); } // deprecated methods: Statistic(bool) { } __attribute__ ((deprecated ("use default constructor instead"))); void clear(bool) { clear(); } __attribute__ ((deprecated ("use Statistic::clear(void) instead"))); protected: count_type _cnt { 0 }; value_type _sum { 0.0 }; // NaN; value_type _min { 0.0 }; // NaN; value_type _max { 0.0 }; // NaN; // Conditionally compile to reduce dead code if not used struct Empty { void clear() { } value_type ssqdif() const { return NaN; } void ssqdif(value_type v) { } }; struct StdDev { value_type _ssqdif { 0.0 }; // sum of squares difference void clear() { _ssqdif = 0.0; } value_type ssqdif() const { return _ssqdif; } void ssqdif(value_type v) { _ssqdif = v; } }; typename std::conditional<_useStdDev, StdDev, Empty>::type _extra; }; } // namespace statistic // This typedef maintains backwards API compatibility with library // versions <= 0.4.4. typedef statistic::Statistic Statistic; // NOTE: Do not issue 'using statistic;' in your code because the // compiler will not be able to distinguish between the template // '::Statistic' and the typedef 'statistic::Statistic' // -- END OF FILE --