// // FILE: ansi.cpp // AUTHOR: Rob Tillaart // VERSION: 0.1.8 // PURPOSE: Arduino library to send ANSI escape sequences // DATE: 2020-04-28 // URL: https://github.com/RobTillaart/ANSI #include "ansi.h" ANSI::ANSI(Stream * stream) { _stream = stream; } int ANSI::available() { return _stream->available(); } int ANSI::read() { return _stream->read(); } int ANSI::peek() { return _stream->peek(); } void ANSI::clearScreen() { // print(F("\033[2J\033[H")); print("\033[2J"); home(); } void ANSI::clearLine(uint8_t clear) { print("\033["); print(clear); print("K"); } void ANSI::home() { print("\033[H"); }; // ANSI has three different color spaces: 4-bit color, 8-bit color, and 24-bit color // These are rendered with SGR 30-37,90-97/40-47,100-107, SGR 38;5/48;5, and SGR 38;2/48;2, respectively // The 4-bit color space is the most widely compatible and the most compactly transmitted enum { fg_normal = 30, bg_normal = 40, bright_color = 52, extended_color = 8, extended_color8 = 5, extended_color24 = 2, }; void ANSI::foreground(uint8_t fgcolor) { if (fgcolor < 16) { this->color4(fg_normal, fgcolor); } else { this->color8(fg_normal, fgcolor); } } void ANSI::background(uint8_t bgcolor) { if (bgcolor < 16) { this->color4(bg_normal, bgcolor); } else { this->color8(bg_normal, bgcolor); } } void ANSI::color(uint8_t fgcolor, uint8_t bgcolor) { if (fgcolor < 16 && bgcolor < 16) { this->colors4(fgcolor, bgcolor); } else { this->color8(fg_normal, fgcolor); this->color8(bg_normal, bgcolor); } } uint8_t ANSI::rgb2color(uint8_t r, uint8_t g, uint8_t b) { return 16 + 36 * (uint16_t(r) * 6 / 256) + 6 * (uint16_t(g) * 6 / 256) + (uint16_t(b) * 6 / 256); } void ANSI::gotoXY(uint8_t x, uint8_t y) { print("\033["); print(x); print(";"); print(y); print("H"); } void ANSI::cursorUp(uint8_t x) { print("\033["); print(x); print("A"); } void ANSI::cursorDown(uint8_t x) { print("\033["); print(x); print("B"); } void ANSI::cursorForward(uint8_t x) { print("\033["); print(x); print("C"); } void ANSI::cursorBack(uint8_t x) { print("\033["); print(x); print("D"); } int ANSI::deviceType(uint32_t timeout) { int type = -1; // -1 = unknown print("\033[0c"); uint32_t start = millis(); int read_len = 0; char buffer[8]; while ((read_len != 3) && ((millis() - start) < timeout)) { delay(1); read_len = Serial.readBytes(buffer, 3); if ((buffer[0] == '1') && (buffer[1] == ';')) { type = buffer[2] - '0'; } // Serial.write(buffer, 3); // Serial.println(); } return type; } ////////////////////////////////////////////////// // // PRIVATE // size_t ANSI::write(uint8_t c) { // add line buffer? - interference with write(array, length) !? return _stream->write(c); } size_t ANSI::write(uint8_t * array, uint8_t length) { return _stream->write(array, length); } void ANSI::color4_code(uint8_t base, uint8_t color) { if (color < 8) { print(base + color); } else { print(base + bright_color + color); } } void ANSI::color4(uint8_t base, uint8_t color) { print("\033["); this->color4_code(base, color); print("m"); } void ANSI::colors4(uint8_t fgcolor, uint8_t bgcolor) { print("\033["); this->color4_code(fg_normal, fgcolor); print(";"); this->color4_code(bg_normal, bgcolor); print("m"); } void ANSI::color8(uint8_t base, uint8_t color) { print("\033["); print(base + extended_color); print(";"); print(extended_color8); print(";"); print(color); print("m"); } // -- END OF FILE --