// // FILE: RunningMedian.cpp // AUTHOR: Rob Tillaart // VERSION: 0.3.9 // PURPOSE: RunningMedian library for Arduino #include "RunningMedian.h" RunningMedian::RunningMedian(const uint8_t size) { _size = size; if (_size < MEDIAN_MIN_SIZE) _size = MEDIAN_MIN_SIZE; #if !RUNNING_MEDIAN_USE_MALLOC if (_size > MEDIAN_MAX_SIZE) _size = MEDIAN_MAX_SIZE; #endif #if RUNNING_MEDIAN_USE_MALLOC _values = (float *) malloc(_size * sizeof(float)); _sortIdx = (uint8_t *) malloc(_size * sizeof(uint8_t)); #endif clear(); } RunningMedian::~RunningMedian() { #if RUNNING_MEDIAN_USE_MALLOC free(_values); free(_sortIdx); #endif } // resets all internal counters void RunningMedian::clear() { _count = 0; _index = 0; _sorted = false; for (uint8_t i = 0; i < _size; i++) { _sortIdx[i] = i; } } // adds a new value to the data-set // or overwrites the oldest if full. void RunningMedian::add(float value) { _values[_index++] = value; if (_index >= _size) _index = 0; // wrap around if (_count < _size) _count++; _sorted = false; } float RunningMedian::getMedian() { if (_count == 0) return NAN; if (_sorted == false) sort(); if (_count & 0x01) // is it odd sized? { return _values[_sortIdx[_count / 2]]; } return (_values[_sortIdx[_count / 2]] + _values[_sortIdx[_count / 2 - 1]]) / 2; } float RunningMedian::getQuantile(float quantile) { if (_count == 0) return NAN; if ((quantile < 0) || (quantile > 1)) return NAN; if (_sorted == false) sort(); const float index = (_count - 1) * quantile; const uint8_t lo = floor(index); const uint8_t hi = ceil(index); const float qs = _values[_sortIdx[lo]]; const float h = (index - lo); return (1.0 - h) * qs + h * _values[_sortIdx[hi]]; } float RunningMedian::getAverage() { if (_count == 0) return NAN; float sum = 0; for (uint8_t i = 0; i < _count; i++) { sum += _values[i]; } return sum / _count; } float RunningMedian::getAverage(uint8_t nMedians) { if ((_count == 0) || (nMedians == 0)) return NAN; // when filling the array for first time if (_count < nMedians) nMedians = _count; uint8_t start = ((_count - nMedians) / 2); uint8_t stop = start + nMedians; if (_sorted == false) sort(); float sum = 0; for (uint8_t i = start; i < stop; i++) { sum += _values[_sortIdx[i]]; } return sum / nMedians; } // nMedians is the spread, or the middle N // this version compensated for bias #22 float RunningMedian::getMedianAverage(uint8_t nMedians) { // handle special cases. if ((_count == 0) || (nMedians == 0)) return NAN; if (_count == 1) return _values[0]; if (_count == 2) return (_values[0] + _values[1]) * 0.5; // nMedians can not be larger than current nr of elements. if (_count <= nMedians) return getAverage(); // _count is at least 3 from here // Eliminate the bias when the nMedians would fall slightly // to the left or right of the centre. // If count and nMedians are not both odd or both even reduce // the spread by 1 to make them the same. // If nMedians becomes 0 correct this. to 2. if ((_count & 0x01) != (nMedians & 0x01)) { --nMedians; // nmedians can not become 0 if (nMedians == 0) nMedians = 2; } uint8_t start = (_count - nMedians) / 2; uint8_t stop = start + nMedians; if (_sorted == false) sort(); float sum = 0; for (uint8_t i = start; i < stop; i++) { sum += _values[_sortIdx[i]]; } return sum / nMedians; } float RunningMedian::getElement(const uint8_t n) { if ((_count == 0) || (n >= _count)) return NAN; uint8_t pos = _index + n; if (pos >= _count) // faster than % { pos -= _count; } return _values[pos]; } float RunningMedian::getSortedElement(const uint8_t n) { if ((_count == 0) || (n >= _count)) return NAN; if (_sorted == false) sort(); return _values[_sortIdx[n]]; } // n can be max <= half the (filled) size float RunningMedian::predict(const uint8_t n) { uint8_t mid = _count / 2; if ((_count == 0) || (n >= mid)) return NAN; float med = getMedian(); // takes care of sorting ! if (_count & 0x01) // odd # elements { return max(med - _values[_sortIdx[mid - n]], _values[_sortIdx[mid + n]] - med); } // even # elements float f1 = (_values[_sortIdx[mid - n]] + _values[_sortIdx[mid - n - 1]]) / 2; float f2 = (_values[_sortIdx[mid + n]] + _values[_sortIdx[mid + n - 1]]) / 2; return max(med - f1, f2 - med) / 2; } void RunningMedian::setSearchMode(uint8_t searchMode) { if (searchMode == 1) _searchMode = 1; else _searchMode = 0; } uint8_t RunningMedian::getSearchMode() { return _searchMode; } //////////////////////////////////////////////////////////// // // PRIVATE // // insertion sort - _searchMode = linear or binary. void RunningMedian::sort() { uint16_t lo = 0; uint16_t hi = 0; uint16_t mi = 0; uint16_t temp = 0; for (uint16_t i = 1; i < _count; i++) { temp = _sortIdx[i]; float f = _values[temp]; // handle special case f is smaller than all elements first. // only one compare needed, improves linear search too. if (f <= _values[_sortIdx[0]]) { hi = 0; } else { if (_searchMode == 0) { hi = i; // find insertion point with linear search while ((hi > 0) && (f < _values[_sortIdx[hi - 1]])) { hi--; } } else if (_searchMode == 1) { // find insertion point with binary search lo = 0; hi = i; // be aware there might be duplicates while (hi - lo > 1) { mi = (lo + hi) / 2; if (f < _values[_sortIdx[mi]]) { hi = mi; } else { lo = mi; } } } } // move elements to make space uint16_t k = i; while (k > hi) { _sortIdx[k] = _sortIdx[k - 1]; k--; } // insert at right spot. _sortIdx[k] = temp; } _sorted = true; // // verify sorted // for (int i = 0; i < _count; i++) // { // if (i%5 == 0) Serial.println(); // Serial.print("\t"); // Serial.print(_values[_sortIdx[i]]); // } // Serial.println("\n"); } /* split version of pre-0.3.7 sort - bit faster void RunningMedian::sort() { // insertSort for (uint16_t i = 1; i < _count; i++) { uint16_t hi = i; uint16_t temp = _sortIdx[hi]; float f = _values[temp]; while ((hi > 0) && (f < _values[_sortIdx[hi - 1]])) { hi--; } // move elements to make space uint16_t k = i; while (k > hi) { _sortIdx[k] = _sortIdx[k - 1]; k--; } // insert at right spot. _sortIdx[k] = temp; } _sorted = true; // // verify sorted // for (int i = 0; i < _count; i++) // { // if (i%5 == 0) Serial.println(); // Serial.print("\t"); // Serial.print(_values[_sortIdx[i]]); // } // Serial.println("\n"); } */ /* // straightforward insertion sort - PRE-0.3.7 void RunningMedian::sort() { for (uint16_t i = 1; i < _count; i++) { uint16_t z = i; uint16_t temp = _sortIdx[z]; while ((z > 0) && (_values[temp] < _values[_sortIdx[z - 1]])) { _sortIdx[z] = _sortIdx[z - 1]; z--; } _sortIdx[z] = temp; } _sorted = true; // // verify sorted // for (int i = 0; i < _count; i++) // { // if (i%5 == 0) Serial.println(); // Serial.print("\t"); // Serial.print(_values[_sortIdx[i]]); // } // Serial.println("\n"); } */ // -- END OF FILE --