// // FILE: RunningMedian.cpp // AUTHOR: Rob Tillaart // VERSION: 0.3.3 // PURPOSE: RunningMedian library for Arduino // // HISTORY: // 0.1.00 2011-02-16 initial version // 0.1.01 2011-02-22 added remarks from CodingBadly // 0.1.02 2012-03-15 added // 0.1.03 2013-09-30 added _sorted flag, minor refactor // 0.1.04 2013-10-17 added getAverage(uint8_t) - kudo's to Sembazuru // 0.1.05 2013-10-18 fixed bug in sort; removes default constructor; dynamic memory // 0.1.06 2013-10-19 faster sort, dynamic arrays, replaced sorted float array with indirection array // 0.1.07 2013-10-19 add correct median if _count is even. // 0.1.08 2013-10-20 add getElement(), add getSottedElement() add predict() // 0.1.09 2014-11-25 float to double (support ARM) // 0.1.10 2015-03-07 fix clear // 0.1.11 2015-03-29 undo 0.1.10 fix clear // 0.1.12 2015-07-12 refactor constructor + const // 0.1.13 2015-10-30 fix getElement(n) - kudos to Gdunge // 0.1.14 2017-07-26 revert double to float - issue #33 // 0.1.15 2018-08-24 make runningMedian Configurable #110 // 0.2.0 2020-04-16 refactor. // 0.2.1 2020-06-19 fix library.json // 0.2.2 2021-01-03 add Arduino-CI + unit tests // 0.3.0 2021-01-04 malloc memory as default storage // 0.3.1 2021-01-16 Changed size parameter to 255 max // 0.3.2 2021-01-21 replaced bubbleSort by insertionSort // --> better performance for large arrays. // 0.3.3 2021-01-22 better insertionSort (+ cleanup test code) #include "RunningMedian.h" RunningMedian::RunningMedian(const uint8_t size) { _size = size; if (_size < MEDIAN_MIN_SIZE) _size = MEDIAN_MIN_SIZE; // if (_size > MEDIAN_MAX_SIZE) _size = MEDIAN_MAX_SIZE; #ifdef RUNNING_MEDIAN_USE_MALLOC _values = (float *) malloc(_size * sizeof(float)); _sortIdx = (uint8_t *) malloc(_size * sizeof(uint8_t)); #endif clear(); } RunningMedian::~RunningMedian() { #ifdef RUNNING_MEDIAN_USE_MALLOC free(_values); free(_sortIdx); #endif } // resets all internal counters void RunningMedian::clear() { _count = 0; _index = 0; _sorted = false; for (uint8_t i = 0; i < _size; i++) { _sortIdx[i] = i; } } // adds a new value to the data-set // or overwrites the oldest if full. void RunningMedian::add(float value) { _values[_index++] = value; if (_index >= _size) _index = 0; // wrap around if (_count < _size) _count++; _sorted = false; } float RunningMedian::getMedian() { if (_count == 0) return NAN; if (_sorted == false) sort(); if (_count & 0x01) // is it odd sized? { return _values[_sortIdx[_count / 2]]; } return (_values[_sortIdx[_count / 2]] + _values[_sortIdx[_count / 2 - 1]]) / 2; } float RunningMedian::getQuantile(float q) { if (_count == 0) return NAN; if ((q < 0) || (q > 1)) return NAN; if (_sorted == false) sort(); const float id = (_count - 1) * q; const uint8_t lo = floor(id); const uint8_t hi = ceil(id); const float qs = _values[_sortIdx[lo]]; const float h = (id - lo); return (1.0 - h) * qs + h * _values[_sortIdx[hi]]; } float RunningMedian::getAverage() { if (_count == 0) return NAN; float sum = 0; for (uint8_t i = 0; i < _count; i++) { sum += _values[i]; } return sum / _count; } float RunningMedian::getAverage(uint8_t nMedians) { if ((_count == 0) || (nMedians == 0)) return NAN; if (_count < nMedians) nMedians = _count; // when filling the array for first time uint8_t start = ((_count - nMedians) / 2); uint8_t stop = start + nMedians; if (_sorted == false) sort(); float sum = 0; for (uint8_t i = start; i < stop; i++) { sum += _values[_sortIdx[i]]; } return sum / nMedians; } float RunningMedian::getElement(const uint8_t n) { if ((_count == 0) || (n >= _count)) return NAN; uint8_t pos = _index + n; if (pos >= _count) // faster than % { pos -= _count; } return _values[pos]; } float RunningMedian::getSortedElement(const uint8_t n) { if ((_count == 0) || (n >= _count)) return NAN; if (_sorted == false) sort(); return _values[_sortIdx[n]]; } // n can be max <= half the (filled) size float RunningMedian::predict(const uint8_t n) { uint8_t mid = _count / 2; if ((_count == 0) || (n >= mid)) return NAN; float med = getMedian(); // takes care of sorting ! if (_count & 0x01) // odd # elements { return max(med - _values[_sortIdx[mid - n]], _values[_sortIdx[mid + n]] - med); } // even # elements float f1 = (_values[_sortIdx[mid - n]] + _values[_sortIdx[mid - n - 1]]) / 2; float f2 = (_values[_sortIdx[mid + n]] + _values[_sortIdx[mid + n - 1]]) / 2; return max(med - f1, f2 - med) / 2; } void RunningMedian::sort() { // insertSort for (uint16_t i = 1; i < _count; i++) { uint16_t z = i; uint16_t temp = _sortIdx[z]; while ((z > 0) && (_values[temp] < _values[_sortIdx[z - 1]])) { _sortIdx[z] = _sortIdx[z - 1]; z--; } _sortIdx[z] = temp; } _sorted = true; } // -- END OF FILE --