Version 0.1.0 Multiple AD9S85X devices

How to connect multiple AD985X devices

Introduction

The AD985X is a versatile function generator that can be controlled by a SPI like interface,
however it does not have a SELECT line.

This makes it hard as a device to share the (hardware) SPI bus as it would clock in any data send to
other devices too. The solution for this is to add some extra electronics and a SELECT

line so the device can be controlled more reliably in a multi-SPI device environment. If that works
we can also control multi AD985X devices from one processor.

Architecture 0

The simplest way to control multi AD985X devices is to give them all a disjunct set of pins. As
every device needs typical 4 pins this adds up quickly. In the library this means using the software
SPI interface and this works very well.

Drawback is the large amount of pins used, so some other alternatives will be described.

Architecture 1

Insert an AND port between CLOCK line, controlled by SELECT line

Arduino AND AD985X
DATA m-mmmmmmmmmmmmee oo DATA
. +
SELECT ----| A |
| Y |------- cLOCK
CLOCK ----| B |
. +
=10 J 1 FQ_UD

By controlling the CLOCK line by the SELECT signal only the device selected (SELECT ==
HIGH) will see the CLOCK and will therefor read the bits on the DATA line into its frequency
register(s). When the FQ_UD signal is given only one of the AD985X devices will have a new
frequency in its register and update it accordingly.

Version 0.1.0 Multiple AD9S85X devices

Although this architecture seems to work pretty well, there is a possible problem related to the
moment of the update. This moment is not defined and can therefor cause devices without a new
frequency register value to reset its output signal. This could possibly result in an sudden shift in
phase or in case of a square wave a broken duty cycle.

If the sudden phase shift is no problem for your application. then architecture 1 could work for you.
With a single 74HCO08 IC you can control up to four AD985X devices. All four devices can share
the DATA, CLOCK and FQ_UD line, and you need only an unique SELECT line per device

If your application does not "like" phase shifts or broken duty cycles, we need to “shield off” the
FQ_UD line too. Time to investigate architecture 2.

Architecture 2

Insert an AND port between CLOCK and FQ_UD line, controlled by SELECT line

Arduino AND AD985X
Y- 7N DATA

S +
SELECT ----| A |

| Y |------- CLOCK
CLOCK ----| B |

S +

S +
SELECT ----| A |

| Y |------- FQ_UD
FQUD ----| B |

S +

This architecture looks quite similar to architecture 1 and is not that exciting. The only difference is
that it uses a second AND port for the FQ_UD signal. Now the frequency update signal FQ_UD is
also explicitly controlled by the SELECT line. It allows you to selectively update the devices you
want, in the order you want.

Only the AD985X device selected will now update or refresh its frequency, phase etc. So all the
devices not selected will not do anything and therefor will not have a sudden phase-shift or broken
duty cycle. Therefor this architecture is more robust and will give you more control than the
previous architecture 1.

With a single 74HCO08 IC you can control two AD985X devices.

Version 0.1.0 Multiple AD9S85X devices

Architecture 3

Insert an AND port between CLOCK, FQ_UD and RESET line, controlled by SELECT line

Arduino AND AD985X
DATA ------ccccmcamccaaaas DATA
Fommmm oo - +
SELECT ----] A |
| Y |------- CLOCK
CLOCK ----| B |
Fommm oo - +
tomm oo +
SELECT ----| A |
Y |[------- FQ_UD
FQ_UD ----| B |
tomm oo +
S +
SELECT ----| A |
| Y |[------- RESET
RESET ----| B |
S +

Architecture 3 looks is an extension of architecture 2 and it adds an AND port to control the
(shared) RESET pin of the AD985X devices. The working is similar to the FQ_UD discussed
above. It allows you to selectively reset the devices you want, in the order you want.

Version 0.1.0 Multiple AD9S85X devices

Architecture 4

Insert an AND port between all lines controlled by SELECT line

Arduino AND AD985X
S +
SELECT ----] A |
Y |[------- DATA
DATA ----| B |
T +
Fommmm oo - +
SELECT ----| A |
| Y |------- CLOCK
CLOCK ----] B |
S +
tomm oo +
SELECT ----| A |
| Y |------- FQ_UD
FQUD ----] B |
Fommmm oo - +
T +
SELECT ----| A |
Y |[------- RESET
RESET ----| B |
tomm oo +

Using three AND ports for a device makes us wonder why not add the fourth AND port (as they
typically come in packages of four) for the DATA line. This would indeed be the most robust way
to prevent data meant for other devices to 'leak’ into an AD985X.

Although using this extra AND port would not add a functional advantage, it will be good for the
electronic design. In the design it will give a one to one relation between the AND IC and the
AD985X, which will give the same schema for any amount of AD985X’s used.

Version 0.1.0 Multiple AD9S85X devices

Questions

Q1: Why introduce a SELECT line, as one could share the DATA and CLOCK lines and give
every device its own FQ_UD line?

A good question and yes it could make the architecture simpler if the
AD985X was the only device on the bus. One of the primary functions of the
SELECT line is to prevent data from entering the AD985X if it was not
meant for it. That is the only way to prevent unwanted side effects.

Q2: What is the function of the autoUpdate() function for multiple devices?

By setting autoUpdate(false) for all devices one can change multiple devices at exact the same
moment with a single pulse. For this one something like need the following snippet of code:

// assume autoUpdate(false)
devl.setFrequency(x);

dev2.setFrequency(y);

dev3.setFrequency(z);

// optionally prepare setPhase etc per device.

// prepare simultaneous sync by selecting them all
digitalWrite(SELECT1, HIGH);
digitalWrite(SELECT2, HIGH);
digitalWrite(SELECT3, HIGH);

// update the frequency of all three devices at once
// as all devices share the FQ_UD line
digitalwWrite(FQ_UD, HIGH);

digitalWrite(FQ_UD, LOW);

// restore the unselect state for all devices
digitalWrite(SELECT1, LOW);
digitalWrite(SELECT2, LOW);
digitalWrite(SELECT3, LOW);

With a similar code construct as above, one could update the frequency of a subset of the devices
e.g only two out of four devices at exact the same time, and the other two at a later moment.

Because the class offers the SELECT the user can dynamically define when devices are updated
simultaneously and when they are updated sequentially.

Note that the RESET of all devices or a subset, can be done in the same way, simultaneously or
sequentially.

Version 0.1.0 Multiple AD9S85X devices
Q3: How can I set multple devices to the same frequency as fast as possible?

One can save some time by disabling the autoUpdate() of the devices. Although this sounds like a
contradiction the following code will show how it can be done.

// assume autoUpdate(false)

// prepare simultaneous writing by selecting them all
digitalWrite(SELECT1, HIGH);
digitalWrite(SELECT2, HIGH);
digitalWrite(SELECT3, HIGH);

// writing to device 1 will automatically also write to device 2 and 3
// as we have selected them all
devl.setFrequency(Xx);

// as setFrequency pulls the SELECT line low we need to pull it high again.
digitalWrite(SELECT1, HIGH);

// update the frequency of all three devices at once
// as all devices share the FQ_UD line
digitalwWrite(FQ_UD, HIGH);

digitalWrite(FQ_UD, LOW);

// restore the unselect state for all devices
digitalWrite(SELECT1, LOW);
digitalWrite(SELECT2, LOW);
digitalWrite(SELECT3, LOW);

A test based on sketch - AD9850_multi_sync - runnning on an Arduino UNO gives
the following results and shows it is always substantially faster for multiple
devices.

Disclaimer: tested setFrequency() call duration, not with actual devices

Lib version Mode # Devices Sequential |Simultaneous Factor
0.3.0 HW-SPI 1 72 84 0,86
0.3.0 HW-SPI 2 220 92 2,39
0.3.0 HW-SPI 3 320 100 3,20
0.3.0 HW-SPI 4 424 108 3,93
0.3.0 HW-SPI 5 528 120 4,40
0.3.0 SW-SPI 1 548 572 0,96
0.3.0 SW-SPI 2 1172 584 2,01
0.3.0 SW-SPI 3 1756 588 2,99
0.3.0 SW-SPI 4 2336 600 3,89
0.3.0 SW-SPI 5 2924 600 4,87

Version 0.1.0 Multiple AD9S85X devices

Further reading

Datasheets

- https://www.analog.com/media/en/technical-documentation/data-sheets/AD9850.pdf
- https://www.analog.com/media/en/technical-documentation/data-sheets/AD9851.pdf

7400 series ports

- https://en.wikipedia.org/wiki/List_of_7400-series_integrated_circuits

Arduino library

- https://github.com/RobTillaart/AD985X

	How to connect multiple AD985X devices
	Introduction
	Architecture 0
	Architecture 1
	Architecture 2
	Architecture 3
	Architecture 4
	Questions
	Further reading

