mirror of
https://github.com/RobTillaart/Arduino.git
synced 2024-10-03 18:09:02 -04:00
0.1.1 Gauss
This commit is contained in:
parent
8270df9d5a
commit
33e70b036d
@ -6,6 +6,21 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/)
|
||||
and this project adheres to [Semantic Versioning](http://semver.org/).
|
||||
|
||||
|
||||
## [0.1.1] - 2023-07-07
|
||||
- improve performance => reciprokeSD = 1.0/stddev
|
||||
- update readme.md
|
||||
- add performance section (UNO / ESP32)
|
||||
- elaborated future section
|
||||
- generated a more precise lookup table (8 decimals)
|
||||
- update unit tests
|
||||
- add default parameters to **bool begin(float mean = 0, float stddev = 1)**
|
||||
- allow negative **stddev** but return false if stddev <= 0.
|
||||
- add **float getMean()** convenience function.
|
||||
- add **float getStdDev()** convenience function.
|
||||
- clean up a bit
|
||||
|
||||
|
||||
|
||||
## [0.1.0] - 2023-07-06
|
||||
- initial version
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
//
|
||||
// FILE: Gauss.cpp
|
||||
// AUTHOR: Rob Tillaart
|
||||
// VERSION: 0.1.0
|
||||
// VERSION: 0.1.1
|
||||
// PURPOSE: Library for the Gauss probability math.
|
||||
// DATE: 2023-07-06
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
//
|
||||
// FILE: Gauss.h
|
||||
// AUTHOR: Rob Tillaart
|
||||
// VERSION: 0.1.0
|
||||
// VERSION: 0.1.1
|
||||
// PURPOSE: Library for the Gauss probability math.
|
||||
// DATE: 2023-07-06
|
||||
|
||||
@ -10,7 +10,7 @@
|
||||
#include "Arduino.h"
|
||||
#include "MultiMap.h"
|
||||
|
||||
#define GAUSS_LIB_VERSION (F("0.1.0"))
|
||||
#define GAUSS_LIB_VERSION (F("0.1.1"))
|
||||
|
||||
|
||||
class Gauss
|
||||
@ -20,34 +20,48 @@ public:
|
||||
{
|
||||
_mean = 0;
|
||||
_stddev = 1;
|
||||
_reciprokeSD = 1;
|
||||
}
|
||||
|
||||
bool begin(float mean, float stddev)
|
||||
// stddev should be positive.
|
||||
bool begin(float mean = 0, float stddev = 1)
|
||||
{
|
||||
_mean = mean;
|
||||
_stddev = abs(stddev);
|
||||
return true;
|
||||
_stddev = stddev; // should be positive
|
||||
_reciprokeSD = 1.0 / _stddev;
|
||||
return (stddev > 0);
|
||||
}
|
||||
|
||||
|
||||
float getMean()
|
||||
{
|
||||
return _mean;
|
||||
}
|
||||
|
||||
|
||||
float getStdDev()
|
||||
{
|
||||
return _stddev;
|
||||
}
|
||||
|
||||
|
||||
float P_smaller(float value)
|
||||
{
|
||||
if (_stddev == 0) return NAN;
|
||||
return _P_smaller((value - _mean) / _stddev);
|
||||
// normalize(value)
|
||||
return _P_smaller((value - _mean) * _reciprokeSD);
|
||||
}
|
||||
|
||||
|
||||
float P_larger(float value)
|
||||
{
|
||||
return 1.0 - P_smaller(value);
|
||||
// if (_stddev == 0) return NAN;
|
||||
// optimize math division?
|
||||
// return _P_larger((value - _mean) / _stddev);
|
||||
}
|
||||
|
||||
|
||||
float P_between(float p, float q)
|
||||
{
|
||||
if (_stddev == 0) return NAN;
|
||||
if (p >= q) return 0;
|
||||
return P_smaller(q) - P_smaller(p);
|
||||
}
|
||||
@ -56,8 +70,8 @@ public:
|
||||
float P_equal(float value)
|
||||
{
|
||||
if (_stddev == 0) return NAN;
|
||||
float n = (value - _mean)/_stddev;
|
||||
float c = 1.0 / (_stddev * sqrt(TWO_PI));
|
||||
float n = (value - _mean) * _reciprokeSD;
|
||||
float c = _reciprokeSD * (1.0 / sqrt(TWO_PI));
|
||||
return c * exp(-0.5 * n * n);
|
||||
}
|
||||
|
||||
@ -70,7 +84,7 @@ public:
|
||||
|
||||
float normalize(float value)
|
||||
{
|
||||
return (value - _mean)/_stddev;
|
||||
return (value - _mean) * _reciprokeSD;
|
||||
}
|
||||
|
||||
|
||||
@ -85,27 +99,40 @@ private:
|
||||
|
||||
float _P_smaller(float x)
|
||||
{
|
||||
// TODO improve accuracy or reduce points.
|
||||
// NORM.DIST(mean, stddev, x, true)
|
||||
float __gauss[] = {
|
||||
0.5000, 0.5398, 0.5793, 0.6179, 0.6554, 0.6915, 0.7257, 0.7580,
|
||||
0.7881, 0.8159, 0.8413, 0.8643, 0.8849, 0.9032, 0.9192, 0.9332,
|
||||
0.9452, 0.9554, 0.9641, 0.9713, 0.9772, 0.9821, 0.9861, 0.9893,
|
||||
0.9918, 0.9938, 0.9953, 0.9965, 0.9974, 0.9981, 0.9987, 1.0000
|
||||
0.50000000, 0.53982784, 0.57925971, 0.61791142,
|
||||
0.65542174, 0.69146246, 0.72574688, 0.75803635,
|
||||
0.78814460, 0.81593987, 0.84134475, 0.86433394,
|
||||
0.88493033, 0.90319952, 0.91924334, 0.93319280,
|
||||
0.94520071, 0.95543454, 0.96406968, 0.97128344,
|
||||
0.97724987, 0.98213558, 0.98609655, 0.98927589,
|
||||
0.99180246, 0.99379033, 0.99533881, 0.99653303,
|
||||
0.99744487, 0.99813419, 0.99865010, 0.99996833,
|
||||
0.99999971, 1.00000000
|
||||
};
|
||||
|
||||
// 0..60000 uint16_t = 68 bytes less
|
||||
float __z[] = {
|
||||
0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
|
||||
0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5,
|
||||
1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3,
|
||||
2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 10.0
|
||||
2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 4,0,
|
||||
5.0, 6.0
|
||||
};
|
||||
|
||||
if (x < 0) return 1.0 - multiMap<float>(-x, __z, __gauss, 32);
|
||||
return multiMap<float>(x, __z, __gauss, 32);
|
||||
// a dedicated MultiMap could exploit the fact that
|
||||
// the __z[] array is largely equidistant.
|
||||
// that could remove the __z[] array (almost) completely.
|
||||
if (x < 0) return 1.0 - multiMap<float>(-x, __z, __gauss, 34);
|
||||
return multiMap<float>(x, __z, __gauss, 34);
|
||||
}
|
||||
|
||||
float _mean = 0;
|
||||
float _stddev = 1;
|
||||
float _stddev = 1; // not needed as _reciprokeSD holds same info?
|
||||
float _reciprokeSD = 1;
|
||||
};
|
||||
|
||||
|
||||
// -- END OF FILE --
|
||||
|
||||
|
@ -16,7 +16,7 @@ Library for the Gauss probability math.
|
||||
Gauss is an experimental Arduino library to approximate the probability that a value is
|
||||
smaller or larger than a given value.
|
||||
These under the premises of a Gaussian distribution with parameters **mean** and **stddev**
|
||||
(a.k.a. average / mu and standard deviation / sigma).
|
||||
(a.k.a. average / mu / µ and standard deviation / sigma / σ).
|
||||
If these parameters are not given, 0 and 1 are used by default (normalized Gaussian distribution).
|
||||
|
||||
The values are approximated with **MultiMap()** using a 32 points interpolated lookup.
|
||||
@ -28,12 +28,14 @@ Return values are given as floats, if one needs percentages, just multiply by 10
|
||||
|
||||
#### Accuracy
|
||||
|
||||
The lookup table used has 32 points with 4 significant digits.
|
||||
Do not expect a higher accuracy / precision.
|
||||
The lookup table has 34 points with 8 decimals.
|
||||
This matches the precision of float data type.
|
||||
Do not expect a very high accuracy / precision as interpolation is linear.
|
||||
For many applications this accuracy is sufficient.
|
||||
|
||||
(links to a table with more significant digits is welcome).
|
||||
Values of the table are calculated with ```NORM.DIST(mean, stddev, x, true)```.
|
||||
|
||||
Note: 0.1.0 was 32 points 4 decimals. Need to investigate reduction of points.
|
||||
|
||||
#### Applications
|
||||
|
||||
@ -42,9 +44,20 @@ For many applications this accuracy is sufficient.
|
||||
- compare population data with individual
|
||||
|
||||
|
||||
#### Character
|
||||
|
||||
| parameter | name | ALT-code | char |
|
||||
|:-----------:|:------:|:----------:|:-----:|
|
||||
| mean | mu | ALT-230 | µ |
|
||||
| stddev | sigma | ALT-229 | σ |
|
||||
|
||||
- https://altcodesguru.com/greek-alt-codes.html
|
||||
|
||||
|
||||
#### Related
|
||||
|
||||
- https://en.wikipedia.org/wiki/Normal_distribution
|
||||
- https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_probability/bs704_probability9.html
|
||||
- https://github.com/RobTillaart/Multimap
|
||||
- https://github.com/RobTillaart/Statistic (more stat links there).
|
||||
|
||||
@ -59,19 +72,32 @@ For many applications this accuracy is sufficient.
|
||||
#### Base
|
||||
|
||||
- **Gauss()** constructor. Uses mean = 0 and stddev = 1 by default.
|
||||
- **bool begin(float mean, float stddev)** set the mean and stddev.
|
||||
Returns true on success. If needed stddev is made positive.
|
||||
- **bool begin(float mean = 0, float stddev = 1)** set the mean and stddev.
|
||||
Returns true if stddev > 0 which should be so.
|
||||
Returns false if stddev <= 0, which could be a user choice.
|
||||
Note that if ```stddev == 0```, probabilities cannot be calculated
|
||||
as the distribution is not Gaussian.
|
||||
The default values (0,1) gives the normalized Gaussian distribution.
|
||||
**begin()** can be called at any time to change the mean or stddev.
|
||||
- **float getMean()** returns current mean.
|
||||
- **float getStddev()** returns current stddev.
|
||||
|
||||
|
||||
#### Probability
|
||||
|
||||
Probability functions return NAN if stddev == 0.
|
||||
|
||||
- **float P_smaller(float f)** returns probability **P(x < f)**.
|
||||
Multiply by 100.0 to get the value as a percentage.
|
||||
A.k.a. **CDF()** Cumulative Distribution Function.
|
||||
- **float P_larger(float f)** returns probability **P(x > f)**.
|
||||
Multiply by 100.0 to get the value as a percentage.
|
||||
As the distribution is continuous **P_larger(f) == 1 - P_smaller(f)**.
|
||||
- **float P_between(float f, float g)** returns probability **P(f < x < g)**.
|
||||
Multiply by 100.0 to get the value as a percentage.
|
||||
- **float P_equal(float f)** returns probability **P(x == f)**.
|
||||
This is the bell curve formula.
|
||||
This uses the bell curve formula.
|
||||
|
||||
|
||||
#### Other
|
||||
|
||||
@ -82,43 +108,74 @@ E.g if mean == 50 and stddev == 14, then 71 ==> +1.5 sigma.
|
||||
- **float bellCurve(float f)** returns probability **P(x == f)**.
|
||||
|
||||
|
||||
## Performance
|
||||
|
||||
Indicative numbers for 1000 calls, timing in micros.
|
||||
|
||||
Arduino UNO, 16 MHz, IDE 1.8.19
|
||||
|
||||
| function | 0.1.0 | 0.1.1 | notes |
|
||||
|:--------------|:--------:|:--------:|:--------|
|
||||
| P_smaller | 375396 | 365964 |
|
||||
| P_larger | 384368 | 375032 |
|
||||
| P_between | 265624 | 269176 |
|
||||
| normalize | 44172 | 23024 |
|
||||
| bellCurve | 255728 | 205460 |
|
||||
| approx.bell | 764028 | 719184 | see examples
|
||||
|
||||
|
||||
ESP32, 240 MHz, IDE 1.8.19
|
||||
|
||||
| function | 0.1.0 | 0.1.1 | notes |
|
||||
|:--------------|:--------:|:--------:|:--------|
|
||||
| P_smaller | - | 4046 |
|
||||
| P_larger | - | 4043 |
|
||||
| P_between | - | 3023 |
|
||||
| normalize | - | 592 |
|
||||
| bellCurve | - | 13522 |
|
||||
| approx.bell | - | 7300 |
|
||||
|
||||
|
||||
## Future
|
||||
|
||||
#### Must
|
||||
|
||||
- documentation
|
||||
- mu + sigma character
|
||||
- unit tests
|
||||
|
||||
|
||||
#### Should
|
||||
|
||||
- optimize performance
|
||||
- remove division by stddev
|
||||
- optimize accuracy
|
||||
- revisit lookup of MultiMap
|
||||
- (-10 .. 0) might be more accurate (significant digits)?
|
||||
- double instead of floats? (good table?)
|
||||
|
||||
- make use of equidistant \_\_z\[] table
|
||||
|
||||
|
||||
#### Could
|
||||
|
||||
- **void setMean(float f)**
|
||||
- **float getMean()**
|
||||
- **void setStddev(float f)**
|
||||
- **float getStddev()**
|
||||
- default values for **begin(0,1)**
|
||||
- add examples
|
||||
- e.g. temperature (DS18B20 or DHT22)
|
||||
- e.g. loadcell (HX711)
|
||||
- does the stddev needs to be positive,
|
||||
- what happens if negative values are allowed?
|
||||
- equality test Gauss objects
|
||||
- move code to .cpp file? (rather small lib).
|
||||
- embed MultiMap hardcoded instead of library dependency
|
||||
- **bellCurve()** => **Z()**?
|
||||
- add unit tests
|
||||
- remove **\_stddev** as **\_reciprokeSD** holds same information.
|
||||
- reverse normalization
|
||||
- G(100,25) which value has stddev 0.735?
|
||||
- **VAL(probability = 0.75)** ==> 134 whatever
|
||||
- Returns the value of the distribution for which the **CDF()** is at least probability.
|
||||
- Inverse of **P_smaller()**
|
||||
- **float P_outside(float f, float g)** returns probability **P(x < f) + P(g < x)**.
|
||||
- assuming no overlap. Use **P_outside() = 1 - P_between()**
|
||||
|
||||
|
||||
#### Won't (unless requested)
|
||||
|
||||
- equality test Gauss objects
|
||||
- does the stddev needs to be positive? Yes.
|
||||
- what happens if negative values are allowed? P curve is reversed.
|
||||
- move code to .cpp file? (rather small lib).
|
||||
- **void setMean(float f)** can be done with begin()
|
||||
- **void setStddev(float f)** can be done with begin()
|
||||
|
||||
|
||||
|
@ -20,7 +20,7 @@ void setup(void)
|
||||
Serial.print("GAUSS_LIB_VERSION: ");
|
||||
Serial.println(GAUSS_LIB_VERSION);
|
||||
Serial.println();
|
||||
Serial.println("Timing in micros");
|
||||
Serial.println("Timing in micros (1000 calls)");
|
||||
Serial.println();
|
||||
|
||||
test_1();
|
||||
|
@ -0,0 +1,16 @@
|
||||
Arduino UNO
|
||||
IDE 1.8.19
|
||||
|
||||
Gauss_performance.ino
|
||||
GAUSS_LIB_VERSION: 0.1.1
|
||||
|
||||
Timing in micros (1000 calls)
|
||||
|
||||
P_smaller: 365964
|
||||
P_larger: 375032
|
||||
P_between: 269176
|
||||
normalize: 23024
|
||||
bellCurve: 205460
|
||||
approx.bell: 719184
|
||||
|
||||
done...
|
@ -17,9 +17,9 @@ void setup(void)
|
||||
Serial.println();
|
||||
|
||||
test_1();
|
||||
test_2();
|
||||
test_3();
|
||||
test_4();
|
||||
// test_2();
|
||||
// test_3();
|
||||
// test_4();
|
||||
|
||||
Serial.println("\ndone...");
|
||||
}
|
||||
|
@ -6,6 +6,8 @@ Gauss KEYWORD1
|
||||
# Methods and Functions (KEYWORD2)
|
||||
|
||||
begin KEYWORD2
|
||||
getMean KEYWORD2
|
||||
getStdDev KEYWORD2
|
||||
|
||||
P_smaller KEYWORD2
|
||||
P_larger KEYWORD2
|
||||
|
@ -23,7 +23,7 @@
|
||||
"version": "^0.1.7"
|
||||
}
|
||||
],
|
||||
"version": "0.1.0",
|
||||
"version": "0.1.1",
|
||||
"license": "MIT",
|
||||
"frameworks": "arduino",
|
||||
"platforms": "*",
|
||||
|
@ -1,9 +1,9 @@
|
||||
name=Gauss
|
||||
version=0.1.0
|
||||
version=0.1.1
|
||||
author=Rob Tillaart <rob.tillaart@gmail.com>
|
||||
maintainer=Rob Tillaart <rob.tillaart@gmail.com>
|
||||
sentence=Library for the Gauss probability math.
|
||||
paragraph=
|
||||
paragraph=normal distribution.
|
||||
category=Data Processing
|
||||
url=https://github.com/RobTillaart/Gauss
|
||||
architectures=*
|
||||
|
@ -40,10 +40,14 @@ unittest_teardown()
|
||||
unittest(test_constructor)
|
||||
{
|
||||
Gauss G;
|
||||
|
||||
assertEqualFloat(0.0, G.getMean(), 0.0001);
|
||||
assertEqualFloat(1.0, G.getStdDev(), 0.0001);
|
||||
assertEqualFloat(0.5, G.P_smaller(0), 0.0001);
|
||||
|
||||
G.begin(0, 1);
|
||||
|
||||
assertEqualFloat(0.5, G.P_smaller(0), 0.001);
|
||||
G.begin(10, 3);
|
||||
assertEqualFloat(10.0, G.getMean(), 0.0001);
|
||||
assertEqualFloat(3.0, G.getStdDev(), 0.0001);
|
||||
}
|
||||
|
||||
|
||||
@ -53,13 +57,17 @@ unittest(test_P_smaller)
|
||||
|
||||
G.begin(0, 1);
|
||||
|
||||
assertEqualFloat(0.0013, G.P_smaller(-3.0), 0.001);
|
||||
assertEqualFloat(0.0228, G.P_smaller(-2.0), 0.001);
|
||||
assertEqualFloat(0.1587, G.P_smaller(-1.0), 0.001);
|
||||
assertEqualFloat(0.5000, G.P_smaller(0.0), 0.001);
|
||||
assertEqualFloat(0.8413, G.P_smaller(1.0), 0.001);
|
||||
assertEqualFloat(0.9772, G.P_smaller(2.0), 0.001);
|
||||
assertEqualFloat(0.9987, G.P_smaller(3.0), 0.001);
|
||||
assertEqualFloat(0.0000, G.P_smaller(-6.0), 0.0001);
|
||||
assertEqualFloat(0.0001, G.P_smaller(-4.0), 0.0001);
|
||||
assertEqualFloat(0.0013, G.P_smaller(-3.0), 0.0001);
|
||||
assertEqualFloat(0.0228, G.P_smaller(-2.0), 0.0001);
|
||||
assertEqualFloat(0.1587, G.P_smaller(-1.0), 0.0001);
|
||||
assertEqualFloat(0.5000, G.P_smaller(0.0), 0.0001);
|
||||
assertEqualFloat(0.8413, G.P_smaller(1.0), 0.0001);
|
||||
assertEqualFloat(0.9772, G.P_smaller(2.0), 0.0001);
|
||||
assertEqualFloat(0.9987, G.P_smaller(3.0), 0.0001);
|
||||
assertEqualFloat(0.9999, G.P_smaller(4.0), 0.0001);
|
||||
assertEqualFloat(1.0000, G.P_smaller(6.0), 0.0001);
|
||||
}
|
||||
|
||||
|
||||
@ -69,13 +77,13 @@ unittest(test_P_larger)
|
||||
|
||||
G.begin(0, 1);
|
||||
|
||||
assertEqualFloat(0.9987, G.P_larger(-3.0), 0.001);
|
||||
assertEqualFloat(0.9772, G.P_larger(-2.0), 0.001);
|
||||
assertEqualFloat(0.8413, G.P_larger(-1.0), 0.001);
|
||||
assertEqualFloat(0.5000, G.P_larger(0.0), 0.001);
|
||||
assertEqualFloat(0.1587, G.P_larger(1.0), 0.001);
|
||||
assertEqualFloat(0.0228, G.P_larger(2.0), 0.001);
|
||||
assertEqualFloat(0.0013, G.P_larger(3.0), 0.001);
|
||||
assertEqualFloat(0.9987, G.P_larger(-3.0), 0.0001);
|
||||
assertEqualFloat(0.9772, G.P_larger(-2.0), 0.0001);
|
||||
assertEqualFloat(0.8413, G.P_larger(-1.0), 0.0001);
|
||||
assertEqualFloat(0.5000, G.P_larger(0.0), 0.0001);
|
||||
assertEqualFloat(0.1587, G.P_larger(1.0), 0.0001);
|
||||
assertEqualFloat(0.0228, G.P_larger(2.0), 0.0001);
|
||||
assertEqualFloat(0.0013, G.P_larger(3.0), 0.0001);
|
||||
}
|
||||
|
||||
|
||||
@ -85,13 +93,13 @@ unittest(test_P_between)
|
||||
|
||||
G.begin(0, 1);
|
||||
|
||||
assertEqualFloat(0.4987, G.P_between(-3.0, 0.0), 0.001);
|
||||
assertEqualFloat(0.4772, G.P_between(-2.0, 0.0), 0.001);
|
||||
assertEqualFloat(0.3413, G.P_between(-1.0, 0.0), 0.001);
|
||||
assertEqualFloat(0.0000, G.P_between(0.0, 0.0), 0.001);
|
||||
assertEqualFloat(0.3413, G.P_between(0.0, 1.0), 0.001);
|
||||
assertEqualFloat(0.4772, G.P_between(0.0, 2.0), 0.001);
|
||||
assertEqualFloat(0.4987, G.P_between(0.0, 3.0), 0.001);
|
||||
assertEqualFloat(0.4987, G.P_between(-3.0, 0.0), 0.0001);
|
||||
assertEqualFloat(0.4772, G.P_between(-2.0, 0.0), 0.0001);
|
||||
assertEqualFloat(0.3413, G.P_between(-1.0, 0.0), 0.0001);
|
||||
assertEqualFloat(0.0000, G.P_between(0.0, 0.0), 0.0001);
|
||||
assertEqualFloat(0.3413, G.P_between(0.0, 1.0), 0.0001);
|
||||
assertEqualFloat(0.4772, G.P_between(0.0, 2.0), 0.0001);
|
||||
assertEqualFloat(0.4987, G.P_between(0.0, 3.0), 0.0001);
|
||||
}
|
||||
|
||||
|
||||
@ -101,13 +109,29 @@ unittest(test_P_equal)
|
||||
|
||||
G.begin(0, 1);
|
||||
|
||||
assertEqualFloat(0.004432, G.P_equal(-3.0), 0.001);
|
||||
assertEqualFloat(0.053991, G.P_equal(-2.0), 0.001);
|
||||
assertEqualFloat(0.241971, G.P_equal(-1.0), 0.001);
|
||||
assertEqualFloat(0.398942, G.P_equal(0.0), 0.001);
|
||||
assertEqualFloat(0.241971, G.P_equal(1.0), 0.001);
|
||||
assertEqualFloat(0.053991, G.P_equal(2.0), 0.001);
|
||||
assertEqualFloat(0.004432, G.P_equal(3.0), 0.001);
|
||||
assertEqualFloat(0.004432, G.P_equal(-3.0), 0.0001);
|
||||
assertEqualFloat(0.053991, G.P_equal(-2.0), 0.0001);
|
||||
assertEqualFloat(0.241971, G.P_equal(-1.0), 0.0001);
|
||||
assertEqualFloat(0.398942, G.P_equal(0.0), 0.0001);
|
||||
assertEqualFloat(0.241971, G.P_equal(1.0), 0.0001);
|
||||
assertEqualFloat(0.053991, G.P_equal(2.0), 0.0001);
|
||||
assertEqualFloat(0.004432, G.P_equal(3.0), 0.0001);
|
||||
}
|
||||
|
||||
|
||||
unittest(test_normailze)
|
||||
{
|
||||
Gauss G;
|
||||
|
||||
G.begin(100, 25);
|
||||
|
||||
assertEqualFloat(-3.0, G.normalize(25), 0.0001);
|
||||
assertEqualFloat(-2.0, G.normalize(50), 0.0001);
|
||||
assertEqualFloat(-1.0, G.normalize(75), 0.0001);
|
||||
assertEqualFloat(0.0, G.normalize(100), 0.0001);
|
||||
assertEqualFloat(1.0, G.normalize(125), 0.0001);
|
||||
assertEqualFloat(2.0, G.normalize(150), 0.0001);
|
||||
assertEqualFloat(3.0, G.normalize(175), 0.0001);
|
||||
}
|
||||
|
||||
|
||||
@ -115,3 +139,4 @@ unittest_main()
|
||||
|
||||
|
||||
// -- END OF FILE --
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user