99 lines
2.3 KiB
C++
Raw Normal View History

2021-05-30 14:16:15 +02:00
//
// FILE: TSL235R.cpp
// AUTHOR: Rob Tillaart
2021-06-04 15:58:39 +02:00
// VERSION: 0.1.1
2021-05-30 14:16:15 +02:00
// PURPOSE: library fot the TSL235R light to frequency convertor
//
// HISTORY:
// 0.1.0 2020-05-29 initial version
2021-06-04 15:58:39 +02:00
// 0.1.1 2020-06-03 add irradiance_HS()
2021-05-30 14:16:15 +02:00
#include "TSL235R.h"
TSL235R::TSL235R(float voltage)
{
_voltage = voltage;
calculateFactor();
}
float TSL235R::irradiance(uint32_t Hz)
{
return Hz * _factor;
}
float TSL235R::irradiance(uint32_t pulses, uint32_t milliseconds)
{
return (pulses * 1000.0 * _factor) / milliseconds;
}
2021-06-04 15:58:39 +02:00
float TSL235R::irradiance_HS(uint32_t pulses, uint32_t microseconds)
{
return (pulses * 1000000.0 * _factor) / microseconds;
}
2021-05-30 14:16:15 +02:00
void TSL235R::setWavelength(uint16_t wavelength)
{
_waveLength = wavelength;
calculateFactor();
}
void TSL235R::setVoltage(float voltage)
{
_voltage = voltage;
calculateFactor();
}
void TSL235R::calculateFactor()
{
// figure 1 datasheet
// 1 Khz crosses the line at 35/230 between 1 and 10.
// so the correctiion factor is 10^0.15217 = 1.419659 = 1.42
// as the graph is in kHz we need to correct a factor 1000
// as the irradiance function gets Hz
const float cf = 0.00142;
_waveLengthFactor = calcWLF(_waveLength);
_voltageFactor = 0.988 + (_voltage - 2.7) * (0.015 / 2.8);
_factor = cf * _waveLengthFactor * _voltageFactor;
}
float TSL235R::calcWLF(uint16_t _waveLength)
{
// figure 2 datasheet
// 635 nm is reference 1.000
// remaining is linear interpolated between points in the graph
float in[] = { 300, 350, 400, 500, 600, 635, 700, 750, 800, 850, 900, 1000, 1100};
float out[] = { 0.1, 0.35, 0.5, 0.75, 0.93, 1.00, 1.15, 1.20, 1.15, 1.10, 0.95, 0.40, 0.10};
return 1.0 / multiMap(_waveLength, in, out, 13);
}
float TSL235R::multiMap(float val, float * _in, float * _out, uint8_t size)
{
// take care the value is within range
// val = constrain(val, _in[0], _in[size-1]);
if (val <= _in[0]) return _out[0];
if (val >= _in[size-1]) return _out[size-1];
// search right interval
uint8_t pos = 1; // _in[0] allready tested
while(val > _in[pos]) pos++;
// this will handle all exact "points" in the _in array
if (val == _in[pos]) return _out[pos];
// interpolate in the right segment for the rest
return (val - _in[pos-1]) * (_out[pos] - _out[pos-1]) / (_in[pos] - _in[pos-1]) + _out[pos-1];
}
// -- END OF FILE --