mirror of
https://github.com/RobTillaart/Arduino.git
synced 2024-10-03 18:09:02 -04:00
276 lines
5.8 KiB
C
276 lines
5.8 KiB
C
|
#pragma once
|
|||
|
//
|
|||
|
// FILE: statHelpers.ino
|
|||
|
// AUTHOR: Rob Tillaart
|
|||
|
// VERSION: 0.1.2
|
|||
|
// PURPOSE: Arduino library with a number of statistic helper functions.
|
|||
|
// DATE: 2020-07-01
|
|||
|
// URL: https://github.com/RobTillaart/statHelpers
|
|||
|
|
|||
|
|
|||
|
#include "Arduino.h"
|
|||
|
|
|||
|
|
|||
|
#define STATHELPERS_LIB_VERSION (F("0.1.2"))
|
|||
|
|
|||
|
|
|||
|
// TODO
|
|||
|
// Look for optimizations
|
|||
|
// Look for ways to extend the scope
|
|||
|
|
|||
|
|
|||
|
///////////////////////////////////////////////////////////////////////////
|
|||
|
//
|
|||
|
// PERMUTATIONS
|
|||
|
//
|
|||
|
|
|||
|
uint32_t permutations(uint8_t n, uint8_t k)
|
|||
|
{
|
|||
|
uint32_t rv = 1;
|
|||
|
for (uint8_t i = n; i > (n - k); i--) rv *= i;
|
|||
|
return rv;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
uint64_t permutations64(uint8_t n, uint8_t k)
|
|||
|
{
|
|||
|
uint64_t rv = 1;
|
|||
|
for (uint8_t i = n; i > (n - k); i--) rv *= i;
|
|||
|
return rv;
|
|||
|
}
|
|||
|
|
|||
|
// can be optimized similar to dfactorial
|
|||
|
double dpermutations(uint8_t n, uint8_t k)
|
|||
|
{
|
|||
|
double rv = 1;
|
|||
|
for (uint8_t i = n; i > (n - k); i--) rv *= i;
|
|||
|
return rv;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
http://wordaligned.org/articles/next-permutation snippet
|
|||
|
|
|||
|
As an example consider finding the next permutation of:
|
|||
|
|
|||
|
8342666411
|
|||
|
The longest monotonically decreasing tail is 666411, and the corresponding head is 8342.
|
|||
|
|
|||
|
8342 666411
|
|||
|
666411 is, by definition, reverse-ordered, and cannot be increased by permuting its elements. To find the next permutation, we must increase the head; a matter of finding the smallest tail element larger than the head’s final 2.
|
|||
|
|
|||
|
8342 666411
|
|||
|
Walking back from the end of tail, the first element greater than 2 is 4.
|
|||
|
|
|||
|
8342 666411
|
|||
|
Swap the 2 and the 4
|
|||
|
|
|||
|
8344 666211
|
|||
|
Since head has increased, we now have a greater permutation. To reduce to the next permutation, we reverse tail, putting it into increasing order.
|
|||
|
|
|||
|
8344 112666
|
|||
|
Join the head and tail back together. The permutation one greater than 8342666411 is 8344112666.
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
// http://www.nayuki.io/page/next-lexicographical-permutation-algorithm
|
|||
|
|
|||
|
// b = nextPermutation<char>(array, 100);
|
|||
|
template <typename T>
|
|||
|
bool nextPermutation(T * array, uint16_t size)
|
|||
|
{
|
|||
|
// Find longest non-increasing suffix
|
|||
|
int i = size - 1;
|
|||
|
while (i > 0 && array[i - 1] >= array[i]) i--;
|
|||
|
// Now i is the head index of the suffix
|
|||
|
|
|||
|
// Are we at the last permutation already?
|
|||
|
if (i <= 0) return false;
|
|||
|
|
|||
|
// Let array[i - 1] be the pivot
|
|||
|
// Find rightmost element that exceeds the pivot
|
|||
|
int j = size - 1;
|
|||
|
while (array[j] <= array[i - 1])
|
|||
|
j--;
|
|||
|
// Now the value array[j] will become the new pivot
|
|||
|
// Assertion: j >= i
|
|||
|
|
|||
|
// Swap the pivot with j
|
|||
|
T temp = array[i - 1];
|
|||
|
array[i - 1] = array[j];
|
|||
|
array[j] = temp;
|
|||
|
|
|||
|
// Reverse the suffix
|
|||
|
j = size - 1;
|
|||
|
while (i < j)
|
|||
|
{
|
|||
|
temp = array[i];
|
|||
|
array[i] = array[j];
|
|||
|
array[j] = temp;
|
|||
|
i++;
|
|||
|
j--;
|
|||
|
}
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
///////////////////////////////////////////////////////////////////////////
|
|||
|
//
|
|||
|
// FACTORIAL
|
|||
|
//
|
|||
|
|
|||
|
// exact ==> 12!
|
|||
|
uint32_t factorial(uint8_t n)
|
|||
|
{
|
|||
|
uint32_t f = 1;
|
|||
|
while(n > 1) f *= (n--);
|
|||
|
return f;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// exact ==> 20!
|
|||
|
uint64_t factorial64(uint8_t n)
|
|||
|
{
|
|||
|
// to be tested
|
|||
|
// if ( n <= 12) return factorial(12);
|
|||
|
// uint64_t f = factorial(12);
|
|||
|
// for (uint8_t t = 13; t <= n; t++) f *= t;
|
|||
|
uint64_t f = 1;
|
|||
|
while(n > 1) f *= (n--);
|
|||
|
return f;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// float => 34!
|
|||
|
// double => 170!
|
|||
|
double dfactorialReference(uint8_t n)
|
|||
|
{
|
|||
|
double f = 1;
|
|||
|
while (n > 1) f *= (n--);
|
|||
|
return f;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// FASTER VERSION
|
|||
|
// does part of the math with integers.
|
|||
|
// tested on UNO and ESP32, roughly 3x faster
|
|||
|
// numbers differ slightly in the order of IEEE754 precision => acceptable.
|
|||
|
// 10e-7 for 4 bit float
|
|||
|
// 10e-16 for 8 bit double
|
|||
|
double dfactorial(uint8_t n)
|
|||
|
{
|
|||
|
double f = 1;
|
|||
|
while (n > 4)
|
|||
|
{
|
|||
|
uint32_t val = n * (n-1);
|
|||
|
val *= (n-2) * (n-3);
|
|||
|
f *= val;
|
|||
|
n -= 4;
|
|||
|
}
|
|||
|
while (n > 1) f *= (n--); // can be squeezed too.
|
|||
|
return f;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// stirling is an approximation function for factorial(n).
|
|||
|
// it is slower but constant in time.
|
|||
|
// float => 26!
|
|||
|
// double => 143!
|
|||
|
double stirling(uint8_t n)
|
|||
|
{
|
|||
|
double v = exp(-n) * pow(n, n) * sqrt(TWO_PI * n);
|
|||
|
return v;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
///////////////////////////////////////////////////////////////////////////
|
|||
|
//
|
|||
|
// COMBINATIONS
|
|||
|
//
|
|||
|
|
|||
|
// works for n = 0..30 for all k
|
|||
|
uint32_t combinations(uint16_t n, uint16_t k)
|
|||
|
{
|
|||
|
if ((k == 0) || (k == n)) return 1;
|
|||
|
if (k < (n-k)) k = n - k; // symmetry
|
|||
|
uint32_t rv = n;
|
|||
|
uint8_t p = 2;
|
|||
|
for (uint8_t i = n-1; i > k; i--)
|
|||
|
{
|
|||
|
// if ((0xFFFFFFFF / i) < rv) return 0;
|
|||
|
rv = (rv * i) / p;
|
|||
|
p++;
|
|||
|
}
|
|||
|
return rv;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// works for n = 0..61 for all k
|
|||
|
uint64_t combinations64(uint16_t n, uint16_t k)
|
|||
|
{
|
|||
|
if ((k == 0) || (k == n)) return 1;
|
|||
|
if (k < (n-k)) k = n - k; // symmetry
|
|||
|
uint64_t rv = n;
|
|||
|
uint8_t p = 2;
|
|||
|
for (uint8_t i = n-1; i > k; i--)
|
|||
|
{
|
|||
|
rv = (rv * i) / p;
|
|||
|
p++;
|
|||
|
}
|
|||
|
return rv;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// experimental - not exact but allows large values
|
|||
|
// float (4 bits) works till n = 125 for all k
|
|||
|
// double (8 bits) works till n = 1020 for all k
|
|||
|
double dcombinations(uint16_t n, uint16_t k)
|
|||
|
{
|
|||
|
if ((k == 0) || (k == n)) return 1;
|
|||
|
if (k < (n-k)) k = n - k; // symmetry
|
|||
|
double rv = n;
|
|||
|
uint16_t p = 2;
|
|||
|
for (uint16_t i = n-1; i > k; i--)
|
|||
|
{
|
|||
|
rv = (rv * i) / p;
|
|||
|
p++;
|
|||
|
}
|
|||
|
return rv;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// recursive (mind your stack)
|
|||
|
// works for n = 0..30 for all k
|
|||
|
uint32_t rcombinations(uint16_t n, uint16_t k)
|
|||
|
{
|
|||
|
if (k > (n-k)) k = n - k; // symmetry
|
|||
|
if (k == 0) return 1;
|
|||
|
return (n * rcombinations(n - 1, k - 1)) / k;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// recursive
|
|||
|
// works for n = 0..61 for all k
|
|||
|
uint64_t rcombinations64(uint16_t n, uint16_t k)
|
|||
|
{
|
|||
|
if (k > (n-k)) k = n - k; // symmetry
|
|||
|
if (k == 0) return 1;
|
|||
|
return (n * rcombinations64(n - 1, k - 1)) / k;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
// very slow recursive way by means of Pascals triangle.
|
|||
|
// works for n = 0..30 for all k (but takes a lot of time)
|
|||
|
uint32_t combPascal(uint16_t n, uint16_t k)
|
|||
|
{
|
|||
|
if (k > (n-k)) k = n - k; // symmetry
|
|||
|
if (k > n ) return 0;
|
|||
|
if (k == 0) return 1;
|
|||
|
if (n < 2) return 1;
|
|||
|
uint32_t rv = combPascal(n-1, k-1);
|
|||
|
rv += combPascal(n-1, k);
|
|||
|
return rv;
|
|||
|
}
|
|||
|
|
|||
|
// -- END OF FILE --
|