GY-63_MS5611/libraries/Temperature/temperature.cpp

222 lines
6.4 KiB
C++
Raw Normal View History

2022-04-15 14:19:05 -04:00
//
// FILE: temperature.cpp
// VERSION: 0.3.4
// DATE: 2015-03-29
// PURPOSE: collection temperature functions
//
// HISTORY: see CHANGELOG.md
#include "temperature.h"
float Fahrenheit(float celsius)
{
return 1.8 * celsius + 32; // 5.0 / 9.0 = 1.8
}
float Celsius(float Fahrenheit)
{
return (Fahrenheit - 32) * 0.55555555555; // 5.0 / 9.0 = 0.555...
}
float Kelvin(float celsius)
{
return celsius + 273.15;
}
// reference:
// [1] https://wahiduddin.net/calc/density_algorithms.htm
// [2] https://web.archive.org/web/20100528030817/https://www.colorado.edu/geography/weather_station/Geog_site/about.htm
// dewPoint function based on code of [2]
// calculation of the saturation vapour pressure part is based upon NOAA ESGG(temp)
float dewPoint(float celsius, float humidity)
{
// Calculate saturation vapour pressure
// ratio 100C and actual temp in Kelvin
float A0 = 373.15 / (273.15 + celsius);
// SVP = Saturation Vapor Pressure - based on ESGG() NOAA
float SVP = -7.90298 * (A0 - 1.0);
SVP += 5.02808 * log10(A0);
SVP += -1.3816e-7 * (pow(10, (11.344 * ( 1.0 - 1.0/A0))) - 1.0 );
SVP += 8.1328e-3 * (pow(10, (-3.49149 * (A0 - 1.0 ))) - 1.0 ) ;
SVP += log10(1013.246);
// calculate actual vapour pressure VP;
// note to convert to KPa the -3 is used
float VP = pow(10, SVP - 3) * humidity;
float T = log( VP / 0.61078); // temp var
return (241.88 * T) / (17.558 - T);
}
// dewPointFast() is > 5x faster than dewPoint() - run dewpoint_test.ino
// delta mdewPointFastax with dewPoint() - run dewpoint_test.ino ==> ~0.347
// (earlier version mentions ~0.6544 but that test code is gone :(
// http://en.wikipedia.org/wiki/Dew_point
float dewPointFast(float celsius, float humidity)
{
float a = 17.271;
float b = 237.7;
float temp = (a * celsius) / (b + celsius) + log(humidity/100);
float Td = (b * temp) / (a - temp);
return Td;
}
// https://en.wikipedia.org/wiki/Humidex
float humidex(float celsius, float dewPoint)
{
float e = 19.833625 - 5417.753 /(273.16 + dewPoint);
float h = celsius + 3.3941 * exp(e) - 5.555;
return h;
}
// 0.3.0 => https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
// previous https://en.wikipedia.org/wiki/Heat_index
// TF = temp in Fahrenheit
// RH = relative humidity in %
float heatIndex(float TF, float RH)
{
// Steadman's formula ==> can be optimized :: HI = TF * 1.1 - 10.3 + RH * 0.047
float HI = 0.5 * (TF + 61.0 + ((TF - 68.0) * 1.2) + (RH * 0.094));
// Rothfusz regression
if (HI >= 80)
{
const float c1 = -42.379;
const float c2 = 2.04901523;
const float c3 = 10.14333127;
const float c4 = -0.22475541;
const float c5 = -0.00683783;
const float c6 = -0.05481717;
const float c7 = 0.00122874;
const float c8 = 0.00085282;
const float c9 = -0.00000199;
float A = (( c5 * TF) + c2) * TF + c1;
float B = (((c7 * TF) + c4) * TF + c3) * RH;
float C = (((c9 * TF) + c8) * TF + c6) * RH * RH;
HI = A + B + C;
if ((RH < 13) && (TF <= 112))
{
HI -= ((13 - RH) / 4) * sqrt((17 - abs(TF - 95.0)) / 17);
}
if ((RH > 87) && (TF < 87))
{
HI += ((RH - 85) / 10) * ((87 - TF) / 5);
}
}
return HI;
}
// 0.3.0 => https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
// previous https://en.wikipedia.org/wiki/Heat_index
// TC = temp in Celsius
// RH = relative humidity in %
float heatIndexC(float TC, float RH)
{
if ( (TC < 27) || (RH < 40)) return TC;
float TF = Fahrenheit(TC);
return Celsius(heatIndex(TF, RH));
/*
const float c1 = -8.78469475556;
const float c2 = 1.61139411;
const float c3 = 2.33854883889;
const float c4 = -0.14611605;
const float c5 = -0.012308094;
const float c6 = -0.0164248277778;
const float c7 = 0.002211732;
const float c8 = 0.00072546;
const float c9 = -0.000003582;
float A = (( c5 * Celsius) + c2) * Celsius + c1;
float B = (((c7 * Celsius) + c4) * Celsius + c3) * humidity;
float C = (((c9 * Celsius) + c8) * Celsius + c6) * humidity * humidity;
return A + B + C;
*/
}
// https://en.wikipedia.org/wiki/Wind_chill
// US = Fahrenheit / miles / hour
// METRIC = Celsius / meter / hour (sec)
// wind speed @ 10 meter,
// if convert is true => wind speed will be converted to 1.5 meter
// else ==> formula assumes wind speed @ 1.5 meter
// US
float WindChill_F_mph(const float Fahrenheit, const float milesPerHour, const bool convert)
{
if ((milesPerHour < 3.0) || (Fahrenheit > 50)) return Fahrenheit;
float windSpeed = milesPerHour;
if (convert) windSpeed = pow(milesPerHour, 0.16);
return 35.74 + 0.6125 * Fahrenheit + (0.4275 * Fahrenheit - 35.75) * windSpeed;
}
// METRIC - standard wind chill formula for Environment Canada
float WindChill_C_kmph(const float Celsius, const float kilometerPerHour, const bool convert)
{
if ((kilometerPerHour < 4.8) || (Celsius > 10)) return Celsius;
float windSpeed = kilometerPerHour;
if (convert) windSpeed = pow(kilometerPerHour, 0.16);
return 13.12 + 0.6215 * Celsius + (0.3965 * Celsius - 11.37) * windSpeed;
}
float WindChill_C_mps(const float Celsius, const float meterPerSecond, const bool convert)
{
return WindChill_C_kmph(Celsius, meterPerSecond * 3.6, convert);
}
// https://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html
// Does not have the temperature correction ==> it has almost the -5.257 exponent
// https://www.omnicalculator.com/physics/air-pressure-at-altitude
// similar to https://en.wikipedia.org/wiki/Barometric_formula
//
// Note: altitude in meters.
float baroToSeaLevelC( float pressure, float celsius, float altitude)
{
float altitudeFactor = 0.0065 * altitude;
float kelvin = celsius + 273.15;
return pressure * pow( 1 - (altitudeFactor / (kelvin + altitudeFactor)), -5.257);
}
// https://www.omnicalculator.com/physics/air-pressure-at-altitude
// temperature (Celsius) at altitude (meter)
float seaLevelToAltitude( float pressureSeaLevel, float celsius, float altitude)
{
float kelvin = celsius + 273.15;
// P = P0 * exp( -g.M.h / (R.T));
float factor = -9.80655 * 0.0289644 / 8.31432;
factor /= kelvin;
return pressureSeaLevel * exp(factor * abs(altitude));
}
float altitudeToSeaLevel( float pressure, float celsius, float altitude)
{
float kelvin = celsius + 273.15;
// P = P0 * exp( -g.M.h / (R.T));
float factor = 9.80655 * 0.0289644 / 8.31432;
factor /= kelvin;
return pressure / exp(factor * abs(altitude));
}
// -- END OF FILE --