Add TFT8 class

This commit is contained in:
Phillip Burgess 2019-01-31 15:17:08 -08:00
parent b920674807
commit 25b3d5e4a3
4 changed files with 795 additions and 12 deletions

View File

@ -4,18 +4,17 @@
* @mainpage Adafruit SPI TFT Displays
*
* @section intro_sec Introduction
This is our library for generic SPI TFT Displays with
address windows and 16 bit color (e.g. ILI9341, HX8357D, ST7735...)
* This is our library for SPI TFT Displays with address windows and 16-bit
* color (e.g. ILI9341, HX8357D, ST7735...)
*
* These displays use SPI to communicate, 4 or 5 pins are required to
* interface (RST is optional)
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
Check out the links above for our tutorials and wiring diagrams
These displays use SPI to communicate, 4 or 5 pins are required to
interface (RST is optional)
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
MIT license, all text above must be included in any redistribution
* Written by Limor Fried/Ladyada for Adafruit Industries.
* MIT license, all text above must be included in any redistribution
* @section dependencies Dependencies
*
* This library depends on <a href="https://github.com/adafruit/Adafruit_GFX">

View File

@ -31,7 +31,7 @@
#if defined(__AVR__)
typedef volatile uint8_t RwReg;
#elif defined(ARDUINO_STM32_FEATHER)
typedef volatile uint32 RwReg;
typedef volatile uint32_t RwReg;
#undef USE_FAST_PINIO
typedef class HardwareSPI SPIClass;
#elif defined(__OPENCR__) || defined (__OPENCM904__)

608
Adafruit_TFT8.cpp Normal file
View File

@ -0,0 +1,608 @@
/*!
* @file Adafruit_TFT8.cpp
*
* @mainpage Adafruit 8-bit Parallel TFT Displays
*
* @section intro_sec Introduction
* This is our library for TFT Displays using an 8-bit parallel interface
* with address windows and 16 bit color.
*
* These displays use ip to 13 pins to communicate:
* - 8 data lines (required)
* - Write strobe (required)
* - Command/data (required)
* - Chip select (optional, can be tied LOW)
* - Read strobe (optional)
* - Reset (optional, can connect to MCU reset)
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* Written by Limor Fried/Ladyada for Adafruit Industries.
* MIT license, all text above must be included in any redistribution
* @section dependencies Dependencies
*
* This library depends on <a href="https://github.com/adafruit/Adafruit_GFX">
* Adafruit_GFX</a> being present on your system. Please make sure you have
* installed the latest version before using this library.
*
* @section author Author
*
* Written by Limor "ladyada" Fried for Adafruit Industries.
*
* @section license License
*
* BSD license, all text here must be included in any redistribution.
*
*/
#if !defined(__AVR_ATtiny85__) // Not for ATtiny, at all
#include "Adafruit_TFT8.h"
#ifdef PORT_IOBUS
// On SAMD21, redefine digitalPinToPort() to use the slightly-faster
// PORT_IOBUS rather than PORT (not needed on SAMD51).
#undef digitalPinToPort
#define digitalPinToPort(P) (&(PORT_IOBUS->Group[g_APinDescription[P].ulPort]))
#endif
#ifdef USE_PORT_DMA
#include <Adafruit_ZeroDMA.h>
#include <malloc.h> // memalign() function
// DMA transfer-in-progress indicator and callback
static volatile boolean dma_busy = false;
static void dma_callback(Adafruit_ZeroDMA *dma) {
dma_busy = false;
}
#endif // USE_PORT_DMA
#if defined(__AVR__)
#define WR_LOW() *wrPort &= wrPinMaskClr;
#define WR_HIGH() *wrPort |= wrPinMaskSet;
#define DC_LOW() *dcPort &= dcPinMaskClr;
#define DC_HIGH() *dcPort |= dcPinMaskSet;
#define CS_LOW() if(_cs >= 0) *csPort &= csPinMaskClr;
#define CS_HIGH() if(_cs >= 0) *csPort |= csPinMaskSet;
#define RD_LOW() *rdPort &= rdPinMaskClr;
#define RD_HIGH() *rdPort |= rdPinMaskSet;
#define PORT_OUTPUT() *portDir = 0xFF;
#define PORT_INPUT() *portDir = 0x00;
#else
#define WR_LOW() *wrPortClr = wrPinMask;
#define WR_HIGH() *wrPortSet = wrPinMask;
#define DC_LOW() *dcPortClr = dcPinMask;
#define DC_HIGH() *dcPortSet = dcPinMask;
#define CS_LOW() if(_cs >= 0) *csPortClr = csPinMask;
#define CS_HIGH() if(_cs >= 0) *csPortSet = csPinMask;
#define RD_LOW() *rdPortClr = rdPinMask;
#define RD_HIGH() *rdPortSet = rdPinMask;
#define PORT_OUTPUT() *dirSet = 0xFF;
#define PORT_INPUT() *dirClr = 0xFF;
#define PORT_OUTPUT16() *(volatile uint16_t *)dirSet = 0xFFFF;
#define PORT_INPUT16() *(volatile uint16_t *)dirClr = 0xFFFF;
#endif
#define WR_STROBE() { WR_LOW(); WR_HIGH(); }
/*!
@brief Instantiate Adafruit TFT8 display driver.
@param w Display width in pixels.
@param h Display height in pixels.
@param D0 Arduino pin # for data bit 0 (1+ are extrapolated).
The 8 data bits MUST be contiguous and byte-aligned
(word-aligned for 'wide' interface) within the same
PORT register (may not correspond to Arduino pin sequence).
@param WR Arduino pin # for write strobe.
@param DC Arduino pin # for data/command.
@param CS Arduino pin # for chip select (-1 if unused, tie CS low).
@param RST Arduino pin # for reset (-1 if unused, tie to MCU reset).
@param RD Arduino pin # for read strobe (-1 if unused).
@param wide If true, use 16-bit wide interface (not on AVR).
*/
Adafruit_TFT8::Adafruit_TFT8(uint16_t w, uint16_t h,
int8_t D0, int8_t WR, int8_t DC, int8_t CS, int8_t RST, int8_t RD,
bool wide) : Adafruit_GFX(w, h),
_d0(D0), _wr(WR), _dc(DC), _cs(CS), _rst(RST), _rd(RD)
{
#if defined(__AVR__)
if(digitalPinToBitMask(D0) != 1) return; // D0 MUST be port bit 0
_d0 = D0; // Save D0 pin to indicate valid alignment
wrPort = (PORTreg_t)portOutputRegister(digitalPinToPort(WR));
wrPinMaskSet = digitalPinToBitMask(WR);
dcPort = (PORTreg_t)portOutputRegister(digitalPinToPort(DC));
dcPinMaskSet = digitalPinToBitMask(DC);
if(CS >= 0) {
csPort = (PORTreg_t)portOutputRegister(digitalPinToPort(CS));
csPinMaskSet = digitalPinToBitMask(CS);
} else {
// No chip-select line defined; might be permanently tied to GND.
// Assign a valid GPIO register (though not used for CS), and an
// empty pin bitmask...the nonsense bit-twiddling might be faster
// than checking _cs and possibly branching.
csPort = dcPort;
csPinMaskSet = 0;
}
if(RD >= 0) {
rdPort = (PORTreg_t)portOutputRegister(digitalPinToPort(RD));
rdPinMaskSet = digitalPinToBitMask(RD);
} else {
// No read-strobe line defined; similar to CS case above
rdPort = dcPort;
rdPinMaskSet = 0;
}
wrPinMaskClr = ~wrPinMaskSet;
dcPinMaskClr = ~dcPinMaskSet;
csPinMaskClr = ~csPinMaskSet;
rdPinMaskClr = ~rdPinMaskSet;
writePort = (PORTreg_t)portOutputRegister(digitalPinToPort(D0));
readPort = (PORTreg_t)portInputRegister(digitalPinToPort(D0));
portDir = (PORTreg_t)portModeRegister(digitalPinToPort(D0));
#else
// Confirm D0 bit is byte- or word-aligned in PORT...
if(g_APinDescription[D0].ulPin & (wide ? 15 : 7)) return;
_d0 = D0; // Save D0 pin to indicate valid alignment
_wide = wide;
wrPinMask = digitalPinToBitMask(WR);
wrPortSet = &(PORT->Group[g_APinDescription[WR].ulPort].OUTSET.reg);
wrPortClr = &(PORT->Group[g_APinDescription[WR].ulPort].OUTCLR.reg);
dcPinMask = digitalPinToBitMask(DC);
dcPortSet = &(PORT->Group[g_APinDescription[DC].ulPort].OUTSET.reg);
dcPortClr = &(PORT->Group[g_APinDescription[DC].ulPort].OUTCLR.reg);
if(CS >= 0) { // If chip-select pin is specified...
csPinMask = digitalPinToBitMask(CS);
csPortSet = &(PORT->Group[g_APinDescription[CS].ulPort].OUTSET.reg);
csPortClr = &(PORT->Group[g_APinDescription[CS].ulPort].OUTCLR.reg);
} else {
// No chip-select line defined; might be permanently tied to GND.
// Assign a valid GPIO register (though not used for CS), and an
// empty pin bitmask...the nonsense bit-twiddling might be faster
// than checking _cs and possibly branching.
csPinMask = 0;
csPortSet = dcPortSet;
csPortClr = dcPortClr;
}
if(RD >= 0) { // If read-strobe pin is specified...
rdPinMask = digitalPinToBitMask(RD);
rdPortSet = &(PORT->Group[g_APinDescription[RD].ulPort].OUTSET.reg);
rdPortClr = &(PORT->Group[g_APinDescription[RD].ulPort].OUTCLR.reg);
} else {
rdPinMask = 0;
rdPortSet = dcPortSet;
rdPortClr = dcPortClr;
}
// Get pointers to PORT write/read/dir bytes within 32-bit PORT
uint8_t dBit = g_APinDescription[_d0].ulPin; // d0 bit # in PORT
PortGroup *p = (&(PORT->Group[g_APinDescription[_d0].ulPort]));
uint8_t offset = dBit / 8; // d[7:0] byte # within PORT
if(wide) offset &= ~1; // d[15:8] byte # within PORT
// These are all uint8_t* pointers -- elsewhere they're recast
// as necessary if a 'wide' 16-bit interface is in use.
writePort = (volatile uint8_t *)&(p->OUT.reg) + offset;
readPort = (volatile uint8_t *)&(p->IN.reg) + offset;
dirSet = (volatile uint8_t *)&(p->DIRSET.reg) + offset;
dirClr = (volatile uint8_t *)&(p->DIRCLR.reg) + offset;
#endif
}
/*!
@brief Initialiaze hardware interface.
*/
bool Adafruit_TFT8::init(void) {
if(_d0 < 0) return false; // Bad alignment in constructor
// Initialize data pins. We were only passed d0, so scan
// the pin description list looking for the other pins.
// They'll be on the same PORT, and within the next 7 (or 15) bits
// (because we need to write to a contiguous PORT byte or word).
#if defined(__AVR__)
// PORT registers are 8 bits wide, so just need a register match...
for(uint8_t i=0; i<NUM_DIGITAL_PINS; i++) {
if((PORTreg_t)portOutputRegister(digitalPinToPort(i)) == writePort) {
pinMode(i, OUTPUT);
digitalWrite(i, LOW);
}
}
#else
uint8_t portNum = g_APinDescription[_d0].ulPort, // d0 PORT #
dBit = g_APinDescription[_d0].ulPin, // d0 bit # in PORT
lastBit = dBit + (_wide ? 15 : 7);
for(uint8_t i=0; i<PINS_COUNT; i++) {
if((g_APinDescription[i].ulPort == portNum ) &&
(g_APinDescription[i].ulPin >= dBit ) &&
(g_APinDescription[i].ulPin <= (uint32_t)lastBit)) {
pinMode(i, OUTPUT);
digitalWrite(i, LOW);
}
}
#endif
// Initialize control signal pins, all active LOW
pinMode(_wr, OUTPUT);
digitalWrite(_wr, HIGH);
pinMode(_dc, OUTPUT);
digitalWrite(_dc, HIGH);
if(_cs >= 0) {
pinMode(_cs, OUTPUT);
digitalWrite(_cs, HIGH); // Deselect
}
if(_rd >= 0) {
pinMode(_rd, OUTPUT);
digitalWrite(_rd, HIGH);
}
if(_rst >= 0) {
pinMode(_rst, OUTPUT);
digitalWrite(_rst, HIGH);
delay(100);
digitalWrite(_rst, LOW); // Toggle RST low to reset
delay(100);
digitalWrite(_rst, HIGH);
delay(200);
}
return true;
}
/*!
@brief Initiate write (or read!) operation.
*/
inline void Adafruit_TFT8::startWrite(void) {
CS_LOW(); // Chip select LOW
}
/*!
@brief End write (or read!) operation.
*/
inline void Adafruit_TFT8::endWrite(void) {
CS_HIGH(); // Chip select HIGH
}
/*!
@brief Write one byte to hardware interface.
@param b One byte to send, MSB order
*/
void Adafruit_TFT8::write8(uint8_t b) {
#if defined(__AVR__)
*writePort = b;
#else
if(!_wide) {
*writePort = b;
} else {
*(volatile uint16_t *)writePort = b;
}
#endif
WR_STROBE(); // Write strobe LOW, HIGH
}
/*!
@brief Write one word to hardware interface.
@param w One word to send, MSB order
*/
void Adafruit_TFT8::write16(uint16_t w) {
#if defined(__AVR__)
*writePort = w >> 8; // MSB
WR_STROBE(); // Write strobe LOW, HIGH
*writePort = w; // LSB
WR_STROBE(); // Write strobe LOW, HIGH
#else
if(!_wide) {
*writePort = w >> 8; // MSB
WR_STROBE(); // Write strobe LOW, HIGH
*writePort = w; // LSB
} else {
*(volatile uint16_t *)writePort = w;
}
WR_STROBE(); // Write strobe LOW, HIGH
#endif
}
/*!
@brief Write a command byte.
@param cmd The 8-bit command to send.
*/
void Adafruit_TFT8::writeCommand(uint8_t cmd) {
DC_LOW(); // Data/Command LOW (command mode)
write8(cmd); // Issue value
DC_HIGH(); // Data/Command HIGH (data mode)
}
/*!
@brief Read one byte or word from TFT interface.
@returns One byte or word, native order.
*/
uint16_t Adafruit_TFT8::read(void) {
uint16_t r = 0;
if(_rd >= 0) {
#if defined(__AVR__)
PORT_INPUT(); // Set port to INPUT
RD_LOW(); // Read strobe LOW
r = *readPort; // Read value from port
RD_HIGH(); // Read strobe HIGH
PORT_OUTPUT(); // Set port back to OUTPUT
#else
if(!_wide) {
PORT_INPUT(); // Set port to INPUT
RD_LOW(); // Read strobe LOW
r = *readPort; // Read value from port
RD_HIGH(); // Read strobe HIGH
PORT_OUTPUT(); // Set port back to OUTPUT
} else {
PORT_INPUT16(); // Set port to INPUT (16-bit)
RD_LOW(); // Read strobe LOW
r = *(volatile uint16_t *)readPort; // Read value from port
RD_HIGH(); // Read strobe HIGH
PORT_OUTPUT16(); // Set port back to OUTPUT (16-bit)
}
#endif
}
return r;
}
/*!
@brief Draw a single pixel.
@param x X coordinate.
@param y Y coordinate.
@param color 16-bit 5-6-5 pixel color.
*/
void Adafruit_TFT8::drawPixel(int16_t x, int16_t y, uint16_t color) {
// Clip first...
if((x >= 0) && (x < _width) && (y >= 0) && (y < _height)) {
// THEN device-select and draw...
startWrite();
setAddrWindow(x, y, 1, 1);
writePixel(color);
endWrite();
}
}
/*!
@brief Converts 8-bit (each) R,G,B color to 16-bit packed 5-6-5 value.
@param red Red level, 0 to 255
@param green Green level, 0 to 255
@param blue Blue level, 0 to 255
@return Unsigned 16-bit decimated color in "5-6-5" format
*/
uint16_t Adafruit_TFT8::color565(uint8_t red, uint8_t green, uint8_t blue) {
return ((red & 0xF8) << 8) | ((green & 0xFC) << 3) | (blue >> 3);
}
#if 0
/*!
@brief Issue multiple 2-byte colors.
@param colors Array of 16-bit 5-6-5 Colors to draw.
@param len How many pixels to draw.
*/
void Adafruit_TFT8::writePixels(uint16_t *colors, uint32_t len) {
SPI_WRITE_PIXELS((uint8_t*)colors , len * 2);
}
/*!
@brief Issue a 2-byte color many times.
@param color The 16-bit 5-6-5 Color to draw.
@param len How many pixels to draw.
*/
void Adafruit_TFT8::writeColor(uint16_t color, uint32_t len) {
if(!len) return; // Avoid 0-byte transfers
uint8_t hi = color >> 8, lo = color;
if(hi != lo) {
} else {
len *= 2;
// Issue as bytes
}
}
/**************************************************************************/
/*!
@brief Write a pixel (must have a transaction in progress)
@param x x coordinate
@param y y coordinate
@param color 16-bit 5-6-5 Color to draw with
*/
/**************************************************************************/
void Adafruit_SPITFT::writePixel(int16_t x, int16_t y, uint16_t color) {
if((x < 0) ||(x >= _width) || (y < 0) || (y >= _height)) return;
setAddrWindow(x,y,1,1);
writePixel(color);
}
/**************************************************************************/
/*!
@brief Write a filled rectangle (must have a transaction in progress)
@param x Top left corner x coordinate
@param y Top left corner y coordinate
@param w Width in pixels
@param h Height in pixels
@param color 16-bit 5-6-5 Color to fill with
*/
/**************************************************************************/
void Adafruit_SPITFT::writeFillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color){
if((x >= _width) || (y >= _height)) return;
int16_t x2 = x + w - 1, y2 = y + h - 1;
if((x2 < 0) || (y2 < 0)) return;
// Clip left/top
if(x < 0) {
x = 0;
w = x2 + 1;
}
if(y < 0) {
y = 0;
h = y2 + 1;
}
// Clip right/bottom
if(x2 >= _width) w = _width - x;
if(y2 >= _height) h = _height - y;
setAddrWindow(x, y, w, h);
writeColor(color, (int32_t)w * h);
}
/**************************************************************************/
/*!
@brief Write a perfectly vertical line (must have a transaction in progress)
@param x Top-most x coordinate
@param y Top-most y coordinate
@param h Height in pixels
@param color 16-bit 5-6-5 Color to fill with
*/
/**************************************************************************/
void inline Adafruit_SPITFT::writeFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color){
writeFillRect(x, y, 1, h, color);
}
/**************************************************************************/
/*!
@brief Write a perfectly horizontal line (must have a transaction in progress)
@param x Left-most x coordinate
@param y Left-most y coordinate
@param w Width in pixels
@param color 16-bit 5-6-5 Color to fill with
*/
/**************************************************************************/
void inline Adafruit_SPITFT::writeFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color){
writeFillRect(x, y, w, 1, color);
}
/**************************************************************************/
/*!
@brief Write a perfectly vertical line - sets up transaction
@param x Top-most x coordinate
@param y Top-most y coordinate
@param h Height in pixels
@param color 16-bit 5-6-5 Color to fill with
*/
/**************************************************************************/
void Adafruit_SPITFT::drawFastVLine(int16_t x, int16_t y,
int16_t h, uint16_t color) {
startWrite();
writeFastVLine(x, y, h, color);
endWrite();
}
/**************************************************************************/
/*!
@brief Write a perfectly horizontal line - sets up transaction
@param x Left-most x coordinate
@param y Left-most y coordinate
@param w Width in pixels
@param color 16-bit 5-6-5 Color to fill with
*/
/**************************************************************************/
void Adafruit_SPITFT::drawFastHLine(int16_t x, int16_t y,
int16_t w, uint16_t color) {
startWrite();
writeFastHLine(x, y, w, color);
endWrite();
}
/**************************************************************************/
/*!
@brief Fill a rectangle completely with one color.
@param x Top left corner x coordinate
@param y Top left corner y coordinate
@param w Width in pixels
@param h Height in pixels
@param color 16-bit 5-6-5 Color to fill with
*/
/**************************************************************************/
void Adafruit_SPITFT::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color) {
startWrite();
writeFillRect(x,y,w,h,color);
endWrite();
}
/**************************************************************************/
/*!
@brief Invert the display using built-in hardware command
@param i True if you want to invert, false to make 'normal'
*/
/**************************************************************************/
void Adafruit_SPITFT::invertDisplay(boolean i) {
startWrite();
writeCommand(i ? invertOnCommand : invertOffCommand);
endWrite();
}
/**************************************************************************/
/*!
@brief Draw a 16-bit image (RGB 5/6/5) at the specified (x,y) position.
For 16-bit display devices; no color reduction performed.
Adapted from https://github.com/PaulStoffregen/ILI9341_t3
by Marc MERLIN. See examples/pictureEmbed to use this.
5/6/2017: function name and arguments have changed for compatibility
with current GFX library and to avoid naming problems in prior
implementation. Formerly drawBitmap() with arguments in different order.
@param x Top left corner x coordinate
@param y Top left corner y coordinate
@param pcolors 16-bit array with 16-bit color bitmap
@param w Width of bitmap in pixels
@param h Height of bitmap in pixels
*/
/**************************************************************************/
void Adafruit_SPITFT::drawRGBBitmap(int16_t x, int16_t y,
uint16_t *pcolors, int16_t w, int16_t h) {
int16_t x2, y2; // Lower-right coord
if(( x >= _width ) || // Off-edge right
( y >= _height) || // " top
((x2 = (x+w-1)) < 0 ) || // " left
((y2 = (y+h-1)) < 0) ) return; // " bottom
int16_t bx1=0, by1=0, // Clipped top-left within bitmap
saveW=w; // Save original bitmap width value
if(x < 0) { // Clip left
w += x;
bx1 = -x;
x = 0;
}
if(y < 0) { // Clip top
h += y;
by1 = -y;
y = 0;
}
if(x2 >= _width ) w = _width - x; // Clip right
if(y2 >= _height) h = _height - y; // Clip bottom
pcolors += by1 * saveW + bx1; // Offset bitmap ptr to clipped top-left
startWrite();
setAddrWindow(x, y, w, h); // Clipped area
while(h--) { // For each (clipped) scanline...
writePixels(pcolors, w); // Push one (clipped) row
pcolors += saveW; // Advance pointer by one full (unclipped) line
}
endWrite();
}
#endif // 0
#endif // !__AVR_ATtiny85__

176
Adafruit_TFT8.h Normal file
View File

@ -0,0 +1,176 @@
// Wait - could do non-contiguous (or not byte-bound) data pins by using
// a 8- to 32-bit lookup table. Still requires PORT access; no digitalWrite()
// This would complexify a LOT of code though, there'd be A/B cases ALL OVER
// THE PLACE. No. Just no. Don't do it.
// What about AVR though? How does TFTLCD lib work?
// Whatever TFTLCD does, we want to maintain that here.
// UGH...TFTLCD can work ACROSS PORTS on AVR. Fuck.
// This lib will be SINGLE PORT and must be 8 CONTIGUOUS BYTE-ALIGNED bits
// Verify with Limor, but I'd really prefer those requirements.
#ifndef _ADAFRUIT_TFT8_H_
#define _ADAFRUIT_TFT8_H_
#if !defined(__AVR_ATtiny85__) // Not fot ATtiny, at all
#include "Adafruit_GFX.h"
//#define USE_PORT_DMA ///< If set, use PORT DMA if available
// If DMA is enabled, Arduino sketch MUST #include <Adafruit_ZeroDMA.h>
#if !defined(__SAMD51__)
#undef USE_PORT_DMA ///< Only for SAMD51 chips (SAMD21 lacks PORT DMA)
#endif
#ifdef USE_PORT_DMA
#pragma message ("PORT DMA IS ENABLED. HIGHLY EXPERIMENTAL.")
#include <Adafruit_ZeroDMA.h>
#endif
// Unlike SPITFT, "USE_FAST_PINIO" (direct PORT access) is IMPLICIT here,
// there is no digitalWrite() option. If a device doesn't support direct
// PORT writes, it's not supported by this code...it would be hopelessly
// slow and lose any parallel interface benefit...use SPI instead!
#if defined(__AVR__)
typedef uint8_t PORT_t; ///< PORT values are 8-bit
#else
typedef uint32_t PORT_t; ///< PORT values are 32-bit
#endif
typedef volatile PORT_t* PORTreg_t; ///< PORT register type
/// An optimized parallel display subclass of GFX.
class Adafruit_TFT8 : public Adafruit_GFX {
public:
Adafruit_TFT8(uint16_t w, uint16_t h, int8_t D0, int8_t WR, int8_t DC,
int8_t CS = -1, int8_t RST = -1, int8_t RD = -1, bool wide = false);
bool init(void);
inline void startWrite(void);
inline void endWrite(void);
void write8(uint8_t b);
void write16(uint16_t w);
void writeCommand(uint8_t cmd);
uint16_t read(void);
virtual bool begin() = 0; ///< Subclass MUST provide begin() func
virtual void setAddrWindow(
uint16_t x, uint16_t y, uint16_t w, uint16_t h) = 0;
void drawPixel(int16_t x, int16_t y, uint16_t color);
uint16_t color565(uint8_t r, uint8_t g, uint8_t b);
#if 0
// Transaction API
// These are probably going away -- we'll just have draw funcs
void writePixel(int16_t x, int16_t y, uint16_t color);
void writeFillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color);
void writeFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color);
void writeFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color);
// Transaction API not used by GFX
/*!
@brief SPI displays set an address window rectangle for blitting pixels
@param x Top left corner x coordinate
@param y Top left corner x coordinate
@param w Width of window
@param h Height of window
*/
virtual void setAddrWindow(uint16_t x, uint16_t y, uint16_t w, uint16_t h) = 0;
/*!
@brief Write a 2-byte color (must have a transaction in progress)
@param color 16-bit 5-6-5 Color to draw
*/
void inline writePixel(uint16_t color) { SPI_WRITE16(color); }
void writePixels(uint16_t * colors, uint32_t len);
void writeColor(uint16_t color, uint32_t len);
// Recommended Non-Transaction
void drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color);
void drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color);
void fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color);
using Adafruit_GFX::drawRGBBitmap; // Check base class first
void drawRGBBitmap(int16_t x, int16_t y,
uint16_t *pcolors, int16_t w, int16_t h);
#endif // 0
protected:
int8_t
_d0 = -1, ///< Arduino pin # for data bit 0 (1+ are extrapolated)
_wr, ///< Arduino pin # for write strobe
_dc, ///< Arduino pin # for data/command
_cs, ///< Arduino pin # for chip select (-1 if unused)
_rst, ///< Arduino pin # for reset (-1 if unused)
_rd; ///< Arduino pin # for read strobe (-1 if unused)
#if defined(__AVR__)
PORT_t
wrPinMaskSet, ///< Bitmask for write strobe SET (OR bitmask)
wrPinMaskClr, ///< Bitmask for write strobe CLEAR (AND bitmask)
dcPinMaskSet, ///< Bitmask for data/command SET (OR bitmask)
dcPinMaskClr, ///< Bitmask for data/command CLEAR (AND bitmask)
csPinMaskSet, ///< Bitmask for chip select SET (OR bitmask)
csPinMaskClr, ///< Bitmask for chip select CLEAR (AND bitmask)
rdPinMaskSet, ///< Bitmask for read strobe SET (OR bitmask)
rdPinMaskClr; ///< Bitmask for read strobe CLEAR (AND bitmask)
PORTreg_t
wrPort, ///< PORT register for write strobe
dcPort, ///< PORT register for data/command
csPort, ///< PORT register for chip select
rdPort, ///< PORT register for read strobe
portDir; ///< PORT direction register
#else
PORT_t
wrPinMask, ///< Bitmask for write strobe
dcPinMask, ///< Bitmask for data/command
csPinMask, ///< Bitmask for chip select
rdPinMask; ///< Bitmask for read strobe
PORTreg_t
wrPortSet, ///< PORT register for write strobe SET
wrPortClr, ///< PORT register for write strobe CLEAR
dcPortSet, ///< PORT register for data/command SET
dcPortClr, ///< PORT register for data/command CLEAR
csPortSet, ///< PORT register for chip select SET
csPortClr, ///< PORT register for chip select CLEAR
rdPortSet, ///< PORT register for read strobe SET
rdPortClr; ///< PORT register for read strobe CLEAR
bool
_wide = false; ///< 16-bit interface (not avail on AVR)
volatile uint8_t // Always uint8_t regardless of PORT_t...
*dirSet, ///< PORT byte data direction SET
*dirClr; ///< PORT byte data direction CLEAR
#endif
volatile uint8_t // Always uint8_t regardless of PORT_t...
*writePort, ///< PORT byte for DATA WRITE
*readPort; ///< PORT byte for DATA READ
int16_t
_xstart = 0, ///< Internal framebuffer X offset
_ystart = 0; ///< Internal framebuffer Y offset
#ifdef USE_PORT_DMA
Adafruit_ZeroDMA dma; ///< DMA instance
DmacDescriptor *dptr = NULL; ///< 1st descriptor
DmacDescriptor *descriptor = NULL; ///< Allocated descriptor list
uint16_t *pixelBuf[2]; ///< Working buffers
uint16_t maxFillLen; ///< Max pixels per DMA xfer
uint16_t lastFillColor = 0; ///< Last color used w/fill
uint32_t lastFillLen = 0; ///< # of pixels w/last fill
uint8_t onePixelBuf; ///< For hi==lo fill
#endif
};
#define writePixel(color) write16(color)
#endif // !__AVR_ATtiny85__
#endif // !_ADAFRUIT_TFT8_H_